
SeekConnect

Help Documentation

What is SeekConnect?
SeekConnect is a self-service data onboarding tool that will be made available for select pilot use near
the end of Q1 2023.

The initial version of SeekConnect supports the ingestion of CSV via S3 and SFTP, additional connectors
will be added in the months to follow to enable users to extract data from other sources.

How do I access SeekConnect?
You can access SeekConnect directly in your DataHub in the tools dropdown menu, depicted below:

Once you select the Seek Connect tool it will navigate you to a new page:

This is your SeekConnect Jobs page where you can manage all source connections, data
transformations, and publications. To create a new Job simply click on the Create New + button on the
far right. You can decide to create a new source, transformation, or publication. We will go through each
of these in this document.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Step 1: How do I create a new data pipeline?
First, we will cover the process of creating a new source:

Once you select the Source option, you will be navigated to the Source Job creation page:

To name your dataset, click on the Untitled Source box, type the new name you want the dataset to
have, and press Enter.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

To set up your file source, choose the connector you want from the dropdown menu and follow the
onscreen instructions to fill out the fields required to set up the connection to the source data.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Once you enter the correct information for your S3 bucket, you have the option to adjust the file format:

Select the correct format for your data (CSV, Parquet, Avro, JSON) and adjust any parameters you would
like. Next, click on the continue button at the bottom of the page to create your source.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Step 2: How do I review a sample of the source data before data upload?

WIP - ETA Q2
Once you have completed the Select Source step and established a connection to the source, Seek
Connect will redirect you to the Review files screen.

On this screen, you can select a source file asset and preview a sample of the source data.

Click on the Back button to return to the Create dataset screen and modify your source setup.

Click on Confirm to proceed with the data upload process.

Seek Connect automatically creates the necessary landing and ingestion sources and destinations to
generate the pipeline to your S3 bucket. The Upload page will confirm the Job source has been
completed.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

After each field above is completed, you will be navigated to a preview page where you can save this
Source Job to be used in Transformation and Publication Jobs.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Once the connection is Active, you can click Save to return to the home page to create a new Data
Transformation Job.

Step 3: How to perform a Data Transformation?
To begin your Data Transformation Job, navigate to the Create New + button and select the
Transformation option from the drop-down menu.

The next page will allow you to name your Data Transformation Job and select the source(s) you would
like to perform the transformation on.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Select your source from the left-hand panel. You can click the preview button to see a sample of the data
to help inform your SQL transformation.

To transform this dataset before publishing, you need to navigate to the untitled_transformation.sql tab.
Here, you can write SQL code to select or subset the data you want.

In order to help with your SQL query, we have included a copy feature for each data source you have.
Simply, hover your cursor over your desired source and click the copy button:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Paste this snippet into the untitled_transformations.sql file to begin writing your transformation.

Now, you can add any additional SQL code to transform your dataset.

For this example, we are going to apply a simple transformation to subset the table on the
IS_SUPERHOST column so that we only have Superhosts in the dataset.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

To subset this table to only include Superhosts, we need to add WHERE IS_SUPERHOST = ‘t’ to the
code snippet

You can preview the results of this query by selecting the Preview button below

We can see from the above preview that the only rows included are Superhosts, so we are seeing the
expected result from our above SQL query.

Before saving this Data Transformation Job, you can edit the Title, Rename the File, or choose to
materialize this dataset as a table instead of a view:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Materializing the data as a table will refresh/update the data regularly, based on upstream source data
updates. Materializing as a view will generate results each time it is queried by a user. Each method
brings compute and performance implications to consider. Views are usually the more cost-effective
choice, but not always.

Once you have finished making edits to the Data Transformation Job, click Save in the upper right corner.
This will prompt you to name your transformation. Make sure to give this a unique name as this will be
used in the Publication Job.

After you have saved your Transformation Job, navigate back to the home page to Publish this dataset to
your Data Hub.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Step 4: How do I Publish my new dataset to my Data Hub?
To begin your Publication Job, navigate to the Create New + button and select the Publication option
from the drop-down menu.

A pop-up window will appear asking you to select which Data Transformation Job you would like to
Publish to your Data hub. Select your desired transformation and click Confirm to continue.

Once you confirm which data transformation you would like to publish, you will be navigated to the next
page to map your data

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Step 5: How do I map my data?
On the left-hand side of the page, you can view and edit the names of your columns. You can also edit
the mapping parameters by clicking on the blue icon next to each column. Easily adjust your Data Type,
Mapping Type, Units, and Scale.

To rename a column, find the column you want to rename in the left panel, click on its name, type the new
name you want the column to have, and press Enter.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

To assign mapping for a column, click on the blue filter icon next to its name, and select the appropriate
formatting, mapping type, and additional refinement options. A pop-up window will open.

First, select the appropriate Data Type for that column:

● Text format is used for a textual type of data.
● Number format is used for numeric types of data.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Date field is the calendar dimension of the resulting dataset. It stores the dates of various data
points and is used to build time series from your data. Our system supports the following
statistical date formats for different frequencies:

o Years: 2009, 2010, 2011
o Half years: 2009H1, 2013H2
o Quarters: 2009Q1, 2010Q3, 2012Q4
o Months: 2009M2, 2011M7

● Country format is used for columns that contain country information, which could be represented
by country names or country ISO codes

● Company format is used for columns that contain company information.
● Latitude and Longitude fields can be used to read the latitude or longitude attribute information

for location-based data.

Next, select the appropriate Mapping Type for that column:

● Dimension is used to specify a data dimension for the resulting dataset. A data dimension is also
represented in the form of a dropdown menu option within the dataset for the selection of data
categories to visualize in the DataViewer. Only data rows in your source data that are
complete—no data gaps—may be set as a Dimension.

o In order to visualize data in Knoema’s Dataset Viewer, you will need to choose at least
one column to be a Dimension. This will be the column where you select your data. For
example, the WDI dataset below from World Bank has two Dimensions (Country and
Series)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Measure can be used for numerical data that should be calculated or aggregated. Any number,
currency, or numerical value can be used as a Measure. For Measure columns, you can further
refine the mapping by choosing its:

o Unit is used to specify the units of measurement.
o Scale is used to specify the scale of measurements.
o These can be specified for a Measure in two additional drop-downs:

● Date field is the calendar dimension of the resulting dataset. It stores the dates of various data
points and is used to build time series from your data. Our system supports the following
statistical date formats for different frequencies:

o Years: 2009, 2010, 2011
o Half years: 2009H1, 2013H2
o Quarters: 2009Q1, 2010Q3, 2012Q4
o Months: 2009M2, 2011M7
o Days: MM/DD/YYYY, DD.MM.YYYY

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Primary Date is a Knoema platform concept that signifies the column is for x-axis charting in
standard Knoema time series visualizations and calculations.

● Detail is any additional information attached to a record. It is typically used for information that
would work with the grid visualization tool. For Detail columns, you can further refine the mapping
by choosing:

o Unit is used to specify the units of measurement.
o Frequency is used to specify the data frequency. The following frequencies are

supported:
▪ A - annual
▪ H - semi-annual
▪ Q - quarterly
▪ M - monthly
▪ D - daily

o Scale is used to specify the scale of measurements.

Click the Apply button in the dropdown menu to apply your changes.

Step 6: How do I edit the Metadata?
Next, you can edit the Metadata associated with your dataset. Add Descriptions, Provider details,
Reference URLs, and Dataset type fields here.

Scroll down to see the table with all of the mapping information displayed. If you notice any issues with
the mappings you can click on them and adjust with ease.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Once you finish editing the mapping fields and metadata, click on the Save button in the upper right
corner to upload this dataset to your Data Hub.

After saving this Publication Job the page will reload with a new link to this dataset in your Data Hub:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

The Source Job, Transformation Job, and Publication Job will all remain active, creating a live connection
to your raw data source. These Jobs will remain on your Jobs homepage, where you can easily reference
them and make any edits in the future.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Seek Connect Integration Documentation

Connector Catalog - Databases

MySQL

Features
Feature Support

ed
Notes

Full Refresh Sync Yes

Incremental - Append
Sync

Yes

Replicate Incremental
Deletes

Yes

CDC Yes

SSL Support Yes

SSH Tunnel Connection Yes

Namespaces Yes Enabled by default

Arrays Yes Byte arrays are not supported
yet

The MySQL source does not alter the schema present in your database. Depending on
the destination connected to this source, however, the schema may be altered. See the
destination's documentation for more details.

Troubleshooting

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

There may be problems with mapping values in MySQL's datetime field to other
relational data stores. MySQL permits zero values for date/time instead of NULL which
may not be accepted by other data stores. To work around this problem, you can pass
the following key value pair in the JDBC connector of the source setting
zerodatetimebehavior=Converttonull.

Some users reported that they could not connect to Amazon RDS MySQL or MariaDB.
This can be diagnosed with the error message: Cannot create a
PoolableConnectionFactory. To solve this issue add
enabledTLSProtocols=TLSv1.2 in the JDBC parameters.

Another error that users have reported when trying to connect to Amazon RDS MySQL
is Error: HikariPool-1 - Connection is not available, request
timed out after 30001ms.. Many times this is can be due to the VPC not allowing
public traffic, however, we recommend going through this AWS troubleshooting checklist
to the correct permissions/settings have been granted to allow connection to your
database.

Getting Started (Airbyte Cloud)
On Airbyte Cloud, only TLS connections to your MySQL instance are supported. Other
than that, you can proceed with the open-source instructions below.

Getting Started (Airbyte Open-Source)
Requirements

1. MySQL Server 8.0, 5.7, or 5.6.
2. Create a dedicated read-only Airbyte user with access to all tables needed for

replication.

1. Make sure your database is accessible from the machine running Airbyte

This is dependent on your networking setup. The easiest way to verify if Airbyte is able
to connect to your MySQL instance is via the check connection tool in the UI.

2. Create a dedicated read-only user with access to the relevant tables (Recommended
but optional)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://aws.amazon.com/premiumsupport/knowledge-center/rds-cannot-connect/

Unset

Unset

Unset

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

To create a dedicated database user, run the following commands against your
database:

CREATE USER 'airbyte'@'%' IDENTIFIED BY
'your_password_here';

The right set of permissions differ between the STANDARD and CDC replication method.
For STANDARD replication method, only SELECT permission is required.

GRANT SELECT ON <database name>.* TO 'airbyte'@'%';

For CDC replication method, SELECT, RELOAD, SHOW DATABASES, REPLICATION
SLAVE, REPLICATION CLIENT permissions are required.

GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE,
REPLICATION CLIENT ON *.* TO 'airbyte'@'%';

Your database user should now be ready for use with Airbyte.

3. Set up CDC

For STANDARD replication method this is not applicable. If you select the CDC replication
method then only this is required. Please read the section on CDC below for more
information.

4. That's it!

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Your database user should now be ready for use with Airbyte.

Change Data Capture (CDC)
● If you need a record of deletions and can accept the limitations posted below,

you should be able to use CDC for MySQL.
● If your data set is small, and you just want snapshot of your table in the

destination, consider using Full Refresh replication for your table instead of CDC.
● If the limitations prevent you from using CDC and your goal is to maintain a

snapshot of your table in the destination, consider using non-CDC incremental
and occasionally reset the data and re-sync.

● If your table has a primary key but doesn't have a reasonable cursor field for
incremental syncing (i.e. updated_at), CDC allows you to sync your table
incrementally.

CDC Limitations

● Make sure to read our CDC docs to see limitations that impact all databases
using CDC replication.

● Our CDC implementation uses at least once delivery for all change records.

1. Enable binary logging

You must enable binary logging for MySQL replication. The binary logs record
transaction updates for replication tools to propagate changes. You can configure your
MySQL server configuration file with the following properties, which are described in
below:

server-id = 223344

log_bin = mysql-bin

binlog_format = ROW

binlog_row_image = FULL

binlog_expire_log_seconds = 864000

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● server-id : The value for the server-id must be unique for each server and
replication client in the MySQL cluster. The server-id should be a non-zero
value. If the server-id is already set to a non-zero value, you don't need to
make any change. You can set the server-id to any value between 1 and
4294967295. For more information refer mysql doc

● log_bin : The value of log_bin is the base name of the sequence of binlog files. If
the log_bin is already set, you don't need to make any change. For more
information refer mysql doc

● binlog_format : The binlog_format must be set to ROW. For more information
refer mysql doc

● binlog_row_image : The binlog_row_image must be set to FULL. It
determines how row images are written to the binary log. For more information
refer mysql doc

● binlog_expire_log_seconds : This is the number of seconds for automatic binlog
file removal. We recommend 864000 seconds (10 days) so that in case of a
failure in sync or if the sync is paused, we still have some bandwidth to start from
the last point in incremental sync. We also recommend setting frequent syncs for
CDC.

2. Enable GTIDs (Optional)

Global transaction identifiers (GTIDs) uniquely identify transactions that occur on a
server within a cluster. Though not required for a Airbyte MySQL connector, using
GTIDs simplifies replication and enables you to more easily confirm if primary and
replica servers are consistent. For more information refer mysql doc

● Enable gtid_mode : Boolean that specifies whether GTID mode of the MySQL
server is enabled or not. Enable it via mysql> gtid_mode=ON

● Enable enforce_gtid_consistency : Boolean that specifies whether the server
enforces GTID consistency by allowing the execution of statements that can be
logged in a transactionally safe manner. Required when using GTIDs. Enable it
via mysql> enforce_gtid_consistency=ON

3. Set up initial waiting time(Optional)
DANGER

This is an advanced feature. Use it if absolutely necessary.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_row_image
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#option_mysqld_gtid-mode

The MySQl connector may need some time to start processing the data in the CDC
mode in the following scenarios:

● When the connection is set up for the first time and a snapshot is needed
● When the connector has a lot of change logs to process

The connector waits for the default initial wait time of 5 minutes (300 seconds). Setting
the parameter to a longer duration will result in slower syncs, while setting it to a shorter
duration may cause the connector to not have enough time to create the initial snapshot
or read through the change logs. The valid range is 300 seconds to 1200 seconds.

If you know there are database changes to be synced, but the connector cannot read
those changes, the root cause may be insufficient waiting time. In that case, you can
increase the waiting time (example: set to 600 seconds) to test if it is indeed the root
cause. On the other hand, if you know there are no database changes, you can
decrease the wait time to speed up the zero record syncs.

4. Set up server timezone(Optional)
DANGER

This is an advanced feature. Use it if absolutely necessary.

In CDC mode, the MySQl connector may need a timezone configured if the existing
MySQL database been set up with a system timezone that is not recognized by the
IANA Timezone Database.

In this case, you can configure the server timezone to the equivalent IANA timezone
compliant timezone. (e.g. CEST -> Europe/Berlin).

Note

When a sync runs for the first time using CDC, Airbyte performs an initial consistent
snapshot of your database. Airbyte doesn't acquire any table locks (for tables defined
with MyISAM engine, the tables would still be locked) while creating the snapshot to
allow writes by other database clients. But in order for the sync to work without any
error/unexpected behaviour, it is assumed that no schema changes are happening while
the snapshot is running.

If seeing EventDataDeserializationException errors intermittently with root
cause EOFException or SocketException, you may need to extend the following
MySql server timeout values by running:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.iana.org/time-zones

Unset

set global slave_net_timeout = 120;

set global thread_pool_idle_timeout = 120;

Connection via SSH Tunnel
Airbyte has the ability to connect to a MySQl instance via an SSH Tunnel. The reason
you might want to do this because it is not possible (or against security policy) to
connect to the database directly (e.g. it does not have a public IP address).

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (a.k.a. a bastion sever) that does have direct access to the database. Airbyte
connects to the bastion and then asks the bastion to connect directly to the server.

Using this feature requires additional configuration, when creating the source. We will
talk through what each piece of configuration means.

1. Configure all fields for the source as you normally would, except SSH Tunnel
Method.

2. SSH Tunnel Method defaults to No Tunnel (meaning a direct connection). If
you want to use an SSH Tunnel choose SSH Key Authentication or
Password Authentication.

i. Choose Key Authentication if you will be using an RSA private key
as your secret for establishing the SSH Tunnel (see below for more
information on generating this key).

ii. Choose Password Authentication if you will be using a password as
your secret for establishing the SSH Tunnel.

3. DANGER
Since Airbyte Cloud requires encrypted communication, select SSH Key
Authentication or Password Authentication if you selected preferred as the SSL
Mode; otherwise, the connection will fail.

4. SSH Tunnel Jump Server Host refers to the intermediate (bastion) server
that Airbyte will connect to. This should be a hostname or an IP Address.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

5. SSH Connection Port is the port on the bastion server with which to make
the SSH connection. The default port for SSH connections is 22, so unless you
have explicitly changed something, go with the default.

6. SSH Login Username is the username that Airbyte should use when
connection to the bastion server. This is NOT the MySQl username.

7. If you are using Password Authentication, then SSH Login Username
should be set to the password of the User from the previous step. If you are
using SSH Key Authentication leave this blank. Again, this is not the MySQl
password, but the password for the OS-user that Airbyte is using to perform
commands on the bastion.

8. If you are using SSH Key Authentication, then SSH Private Key should
be set to the RSA Private Key that you are using to create the SSH connection.
This should be the full contents of the key file starting with -----BEGIN RSA
PRIVATE KEY----- and ending with -----END RSA PRIVATE KEY-----.

Generating an SSH Key Pair

The connector expects an RSA key in PEM format. To generate this key:

ssh-keygen -t rsa -m PEM -f myuser_rsa

This produces the private key in pem format, and the public key remains in the standard
format used by the authorized_keys file on your bastion host. The public key should
be added to your bastion host to whichever user you want to use with Airbyte. The
private key is provided via copy-and-paste to the Airbyte connector configuration
screen, so it may log in to the bastion.

Data Type Mapping
MySQL data types are mapped to the following data types when synchronizing data.
You can check the test values examples here. If you can't find the data type you are
looking for or have any problems feel free to add a new test!

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-mysql/src/test-integration/java/io/airbyte/integrations/io/airbyte/integration_tests/sources/MySqlSourceDatatypeTest.java

MySQL Type Resulting
Type

Notes

bit(1) boolean

bit(>1) base64
binary
string

boolean boolean

tinyint(1) boolean

tinyint(>1) number

tinyint(>=1)
unsigned

number

smallint number

mediumint number

int number

bigint number

float number

double number

decimal number

binary string

blob string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

date string ISO 8601 date string. ZERO-DATE value will
be converted to NULL. If column is mandatory,
convert to EPOCH.

datetime,
timestamp

string ISO 8601 datetime string. ZERO-DATE value
will be converted to NULL. If column is
mandatory, convert to EPOCH.

time string ISO 8601 time string. Values are in range
between 00:00:00 and 23:59:59.

year year string Doc

char, varchar with
non-binary charset

string

char, varchar with
binary charset

base64
binary
string

tinyblob base64
binary
string

blob base64
binary
string

mediumblob base64
binary
string

longblob base64
binary
string

binary base64
binary
string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://dev.mysql.com/doc/refman/8.0/en/year.html

varbinary base64
binary
string

tinytext string

text string

mediumtext string

longtext string

json serialized
json string

E.g. {"a": 10, "b": 15}

enum string

set string E.g. blue,green,yellow

geometry base64
binary
string

If you do not see a type in this list, assume that it is coerced into a string. We are happy
to take feedback on preferred mappings.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Microsoft SQL Server (MSSQL)

Features

Feature Support
ed

Notes

Full Refresh Sync
Yes

Incremental Sync -
Append

Yes

Replicate Incremental
Deletes

Yes

CDC (Change Data
Capture)

Yes

SSL Support Yes

SSH Tunnel Connection Yes

Namespaces Yes Enabled by
default

The MSSQL source does not alter the schema present in your database. Depending on
the destination connected to this source, however, the schema may be altered. See the
destination's documentation for more details.

Troubleshooting
You may run into an issue where the connector provides wrong values for some data
types. See discussion on unexpected behaviour for certain datatypes.

Note: Currently hierarchyid and sql_variant are not processed in CDC migration type
(not supported by debezium). For more details please check this ticket

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/4270
https://github.com/airbytehq/airbyte/issues/14411

Getting Started (Airbyte Open-Source)
Requirements

1. MSSQL Server Azure SQL Database, Azure Synapse Analytics, Azure
SQL Managed Instance, SQL Server 2019, SQL Server 2017, SQL
Server 2016, SQL Server 2014, SQL Server 2012, PDW 2008R2 AU34.

2. Create a dedicated read-only Airbyte user with access to all tables needed for
replication

3. If you want to use CDC, please see the relevant section below for further setup
requirements

1. Make sure your database is accessible from Seek Connect. This is dependent on
your networking setup. The easiest way to verify if Airbyte is able to connect to your
MSSQL instance is via the check connection tool in the UI.

2. Create a dedicated read-only user with access to the relevant tables
(Recommended but optional)

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

Coming soon: suggestions on how to create this user.

3. Your database user should now be ready for use with Airbyte!

Change Data Capture (CDC)

We use SQL Server's change data capture feature to capture row-level INSERT,
UPDATE and DELETE operations that occur on cdc-enabled tables.

Some extra setup requiring at least db_owner permissions on the database(s) you
intend to sync from will be required (detailed below).

Please read the CDC docs for an overview of how Airbyte approaches CDC.

Should I use CDC for MSSQL?

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017

● If you need a record of deletions and can accept the limitations posted below,
CDC is the way to go!

● If your data set is small and/or you just want a snapshot of your table in the
destination, consider using Full Refresh replication for your table instead of CDC.

● If the limitations below prevent you from using CDC and your goal is to maintain
a snapshot of your table in the destination, consider using non-CDC incremental
and occasionally reset the data and re-sync.

● If your table has a primary key but doesn't have a reasonable cursor field for
incremental syncing (i.e. updated_at), CDC allows you to sync your table
incrementally.

CDC Config

Paramet
er

Type Default Description

Data to
Sync

Enum: Existing
and New, New
Changes Only

Existi
ng and
New

What data should be synced under the
CDC. Existing and New will read
existing data as a snapshot, and sync
new changes through CDC. New
Changes Only will skip the initial
snapshot, and only sync new changes
through CDC. See documentation here
for details. Under the hood, this
parameter sets the snapshot.mode in
Debezium.

Snapsho
t
Isolation
Level

Enum: Snapshot,
Read Committed

Snapsh
ot

Mode to control which transaction
isolation level is used and how long the
connector locks tables that are
designated for capture. If you don't know
which one to choose, just use the default
one. See documentation here for details.
Under the hood, this parameter sets the
snapshot.isolation.mode in
Debezium.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://debezium.io/documentation/reference/stable/connectors/sqlserver.html#sqlserver-property-snapshot-mode
https://debezium.io/documentation/reference/stable/connectors/sqlserver.html#sqlserver-property-snapshot-isolation-mode

CDC Limitations

● Make sure to read our CDC docs to see limitations that impact all databases
using CDC replication.

● There are some critical issues regarding certain datatypes. Please find detailed
info in this Github issue.

● CDC is only available for SQL Server 2016 Service Pack 1 (SP1) and later.
● db_owner (or higher) permissions are required to perform the neccessary setup

for CDC.
● If you set Initial Snapshot Isolation Level to Snapshot, you must

enable snapshot isolation mode on the database(s) you want to sync. This is
used for retrieving an initial snapshot without locking tables.

● For SQL Server Always On read-only replica, only Snapshot initial snapshot
isolation level is supported.

● On Linux, CDC is not supported on versions earlier than SQL Server 2017 CU18
(SQL Server 2019 is supported).

● Change data capture cannot be enabled on tables with a clustered columnstore
index. (It can be enabled on tables with a non-clustered columnstore index).

● The SQL Server CDC feature processes changes that occur in user-created
tables only. You cannot enable CDC on the SQL Server master database.

● Using variables with partition switching on databases or tables with change data
capture (CDC) is not supported for the ALTER TABLE ... SWITCH TO ...
PARTITION ... statement

● Our implementation has not been tested with managed instances, such as Azure
SQL Database (we welcome any feedback from users who try this!)

○ If you do want to try this, CDC can only be enabled on Azure SQL
databases tiers above Standard 3 (S3+). Basic, S0, S1 and S2 tiers are
not supported for CDC.

● Our CDC implementation uses at least once delivery for all change records.
● Read more on CDC limitations in the Microsoft docs.

Setting up CDC for MSSQL

1. Enable CDC on database and tables

MS SQL Server provides some built-in stored procedures to enable CDC.

● To enable CDC, a SQL Server administrator with the necessary privileges
(db_owner or sysadmin) must first run a query to enable CDC at the database
level.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/4542
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017#limitations

Unset

Unset

● USE {database name}
● GO

EXEC sys.sp_cdc_enable_db
GO

● The administrator must then enable CDC for each table that you want to capture.
Here's an example:

● USE {database name}
● GO

EXEC sys.sp_cdc_enable_table
@source_schema = N'{schema name}',
@source_name = N'{table name}',
@role_name = N'{role name}', [1]
@filegroup_name = N'{fiilegroup name}', [2]
@supports_net_changes = 0 [3]
GO

○ [1] Specifies a role which will gain SELECT permission on the captured
columns of the source table. We suggest putting a value here so you can
use this role in the next step but you can also set the value of
@role_name to NULL to allow only sysadmin and db_owner to have
access. Be sure that the credentials used to connect to the source in
Airbyte align with this role so that Airbyte can access the cdc tables.

○ [2] Specifies the filegroup where SQL Server places the change table. We
recommend creating a separate filegroup for CDC but you can leave this
parameter out to use the default filegroup.

○ [3] If 0, only the support functions to query for all changes are generated.
If 1, the functions that are needed to query for net changes are also
generated. If supports_net_changes is set to 1, index_name must be
specified, or the source table must have a defined primary key.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

● (For more details on parameters, see the Microsoft doc page for this stored
procedure).

● If you have many tables to enable CDC on and would like to avoid having to run
this query one-by-one for every table, this script might help!

For further detail, see the Microsoft docs on enabling and disabling CDC.

2. Enable snapshot isolation

● When a sync runs for the first time using CDC, Airbyte performs an initial
consistent snapshot of your database. To avoid acquiring table locks, Airbyte
uses snapshot isolation, allowing simultaneous writes by other database clients.
This must be enabled on the database like so:

●
● ALTER DATABASE {database name}
● SET ALLOW_SNAPSHOT_ISOLATION ON;

3. Create a user and grant appropriate permissions

● Rather than use sysadmin or db_owner credentials, we recommend creating a
new user with the relevant CDC access for use with Airbyte. First let's create the
login and user and add to the db_datareader role:

●
● USE {database name};
● CREATE LOGIN {user name}

WITH PASSWORD = '{password}';
CREATE USER {user name} FOR LOGIN {user name};
EXEC sp_addrolemember 'db_datareader', '{user name}';

○
Add the user to the role specified earlier when enabling cdc on the
table(s):

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-enable-table-transact-sql?view=sql-server-ver15
http://www.techbrothersit.com/2013/06/change-data-capture-cdc-sql-server_69.html
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/enable-and-disable-change-data-capture-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15

Unset

Unset

Unset

○
○ EXEC sp_addrolemember '{role name}', '{user

name}';

○
This should be enough access, but if you run into problems, try also
directly granting the user SELECT access on the cdc schema:

○
○ USE {database name};
○ GRANT SELECT ON SCHEMA :: [cdc] TO {user name};

○
If feasible, granting this user 'VIEW SERVER STATE' permissions will
allow Airbyte to check whether or not the SQL Server Agent is running.
This is preferred as it ensures syncs will fail if the CDC tables are not
being updated by the Agent in the source database.

○
○ USE master;
○ GRANT VIEW SERVER STATE TO {user name};

4. Extend the retention period of CDC data

● In SQL Server, by default, only three days of data are retained in the change
tables. Unless you are running very frequent syncs, we suggest increasing this
retention so that in case of a failure in sync or if the sync is paused, there is still
some bandwidth to start from the last point in incremental sync.

● These settings can be changed using the stored procedure
sys.sp_cdc_change_job as below:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-ver15#relationship-with-log-reader-agent
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-change-job-transact-sql?view=sql-server-ver15

Unset

Unset

Unset

●
● -- we recommend 14400 minutes (10 days) as retention

period
● EXEC sp_cdc_change_job @job_type='cleanup', @retention

= {minutes}

●
After making this change, a restart of the cleanup job is required:

EXEC sys.sp_cdc_stop_job @job_type = 'cleanup';

EXEC sys.sp_cdc_start_job @job_type = 'cleanup';

5. Ensure the SQL Server Agent is running

● MSSQL uses the SQL Server Agent
to run the jobs necessary
for CDC. It is therefore vital that the Agent is operational in order for to CDC to
work effectively. You can check
the status of the SQL Server Agent as follows:

EXEC xp_servicecontrol 'QueryState', N'SQLServerAGENT';

●
If you see something other than 'Running.' please follow

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-ver15#agent-jobs

the Microsoft docs
to start the service.

Connection to MSSQL via an SSH Tunnel
Airbyte has the ability to connect to a MSSQL instance via an SSH Tunnel. The reason
you might want to do this because it is not possible (or against security policy) to
connect to the database directly (e.g. it does not have a public IP address).

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (a.k.a. a bastion sever) that does have direct access to the database. Airbyte
connects to the bastion and then asks the bastion to connect directly to the server.

Using this feature requires additional configuration, when creating the source. We will
talk through what each piece of configuration means.

1. Configure all fields for the source as you normally would, except SSH Tunnel
Method.

2. SSH Tunnel Method defaults to No Tunnel (meaning a direct connection). If
you want to use an
SSH Tunnel choose SSH Key Authentication or Password
Authentication.

i. Choose Key Authentication if you will be using an RSA private key
as your secret for
establishing the SSH Tunnel (see below for more information on
generating this key).

ii. Choose Password Authentication if you will be using a password as
your secret for establishing
the SSH Tunnel.

3. SSH Tunnel Jump Server Host refers to the intermediate (bastion) server
that Airbyte will connect to. This should
be a hostname or an IP Address.

4. SSH Connection Port is the port on the bastion server with which to make
the SSH connection. The default port for
SSH connections is 22, so unless you have explicitly changed something, go
with the default.

5. SSH Login Username is the username that Airbyte should use when
connection to the bastion server. This is NOT the
MSSQL username.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/sql/ssms/agent/start-stop-or-pause-the-sql-server-agent-service?view=sql-server-ver15

Unset

6. If you are using Password Authentication, then SSH Login Username
should be set to the
password of the User from the previous step. If you are using SSH Key
Authentication leave this
blank. Again, this is not the MSSQL password, but the password for the OS-user
that Airbyte is
using to perform commands on the bastion.

7. If you are using SSH Key Authentication, then SSH Private Key should
be set to the RSA
private Key that you are using to create the SSH connection. This should be the
full contents of
the key file starting with -----BEGIN RSA PRIVATE KEY----- and ending
with -----END RSA PRIVATE KEY-----.

Generating an SSH Key Pair

The connector expects an RSA key in PEM format. To generate this key:

ssh-keygen -t rsa -m PEM -f myuser_rsa

This produces the private key in pem format, and the public key remains in the standard
format used by the authorized_keys file on your bastion host. The public key should
be added to your bastion host to whichever user you want to use with Airbyte. The
private key is provided via copy-and-paste to the Airbyte connector configuration
screen, so it may log in to the bastion.

Data type mapping
MSSQL data types are mapped to the following data types when synchronizing data.
You can check the test values examples here. If you can't find the data type you are
looking for or have any problems feel free to add a new test!

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-mssql/src/test-integration/java/io/airbyte/integrations/source/mssql/MssqlSourceComprehensiveTest.java

MSSQL Type Resulting
Type

Note
s

bigint
number

binary string

bit boolean

char string

date number

datetime string

datetime2 string

datetimeoffset string

decimal number

int number

float number

geography string

geometry string

money number

numeric number

ntext string

nvarchar string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

nvarchar(max) string

real number

smalldatetime string

smallint number

smallmoney number

sql_variant string

uniqueidentifier string

text string

time string

tinyint number

varbinary string

varchar string

varchar(max) COLLATE
Latin1_General_100_CI_AI_SC_UTF8

string

xml string

If you do not see a type in this list, assume that it is coerced into a string. We are happy
to take feedback on preferred mappings.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

AlloyDB for PostgreSQL
This page contains the setup guide and reference information for the AlloyDB for
PostgreSQL.

Prerequisites
● For Airbyte Open Source users, upgrade your Airbyte platform to version

v0.40.0-alpha or newer
● For Airbyte Cloud (and optionally for Airbyte Open Source), ensure SSL is

enabled in your environment

Setup guide

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

When to use AlloyDB with CDC
Configure AlloyDB with CDC if:

● You need a record of deletions
● Your table has a primary key but doesn't have a reasonable cursor field for

incremental syncing (updated_at). CDC allows you to sync your table
incrementally

If your goal is to maintain a snapshot of your table in the destination but the limitations
prevent you from using CDC, consider using non-CDC incremental sync and
occasionally reset the data and re-sync.

If your dataset is small and you just want a snapshot of your table in the destination,
consider using Full Refresh replication for your table instead of CDC.

Step 1: (Optional) Create a dedicated read-only user

We recommend creating a dedicated read-only user for better permission control and
auditing. Alternatively, you can use an existing AlloyDB user in your database.

To create a dedicated user, run the following command:

CREATE USER <user_name> PASSWORD 'your_password_here';

Grant access to the relevant schema:

GRANT USAGE ON SCHEMA <schema_name> TO <user_name>

NOTE

To replicate data from multiple AlloyDB schemas, re-run the command to grant access
to all the relevant schemas. Note that you'll need to set up multiple Airbyte sources
connecting to the same AlloyDB database on multiple schemas.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Unset

Grant the user read-only access to the relevant tables:

GRANT SELECT ON ALL TABLES IN SCHEMA <schema_name> TO
<user_name>;

Allow user to see tables created in the future:

ALTER DEFAULT PRIVILEGES IN SCHEMA <schema_name> GRANT
SELECT ON TABLES TO <user_name>;

Additionally, if you plan to configure CDC for the AlloyDB source connector, grant
REPLICATION permissions to the user:

ALTER USER <user_name> REPLICATION;

Syncing a subset of columns

Currently, there is no way to sync a subset of columns using the AlloyDB source
connector:

● When setting up a connection, you can only choose which tables to sync, but not
columns.

● If the user can only access a subset of columns, the connection check will pass.
However, the data sync will fail with a permission denied exception.

The workaround for partial table syncing is to create a view on the specific columns, and
grant the user read access to that view:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

CREATE VIEW <view_name> as SELECT <columns> FROM <table>;

GRANT SELECT ON TABLE <view_name> IN SCHEMA <schema_name>
to <user_name>;

Note: The workaround works only for non-CDC setups since CDC requires data to be in
tables and not views. This issue is tracked in #9771.

Step 2: Set up the AlloyDB connector in Airbyte
1. Log into your Airbyte Cloud or Airbyte Open Source account.
2. Click Sources and then click + New source.
3. On the Set up the source page, select AlloyDB from the Source type dropdown.
4. Enter a name for your source.
5. For the Host, Port, and DB Name, enter the hostname, port number, and name

for your AlloyDB database.
6. List the Schemas you want to sync.

NOTE
The schema names are case sensitive. The 'public' schema is set by default.
Multiple schemas may be used at one time. No schemas set explicitly - will sync
all of existing.

7. For User and Password, enter the username and password you created in Step
1.

8. To customize the JDBC connection beyond common options, specify additional
supported JDBC URL parameters as key-value pairs separated by the symbol &
in the JDBC URL Parameters (Advanced) field.
Example: key1=value1&key2=value2&key3=value3
These parameters will be added at the end of the JDBC URL that the AirByte will
use to connect to your AlloyDB database.
The connector now supports connectTimeout and defaults to 60 seconds.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/9771
https://cloud.airbyte.com/workspaces
https://jdbc.postgresql.org/documentation/head/connect.html

Setting connectTimeout to 0 seconds will set the timeout to the longest time
available.
Note: Do not use the following keys in JDBC URL Params field as they will be
overwritten by Airbyte: currentSchema, user, password, ssl, and sslmode.
DANGER
This is an advanced configuration option. Users are advised to use it with
caution.

9. For Airbyte Open Source, toggle the switch to connect using SSL. Airbyte Cloud
uses SSL by default.

10.For Replication Method, select Standard or Logical CDC from the dropdown.
Refer to Configuring AlloyDB connector with Change Data Capture (CDC) for
more information.

11. For SSH Tunnel Method, select:
○ No Tunnel for a direct connection to the database
○ SSH Key Authentication to use an RSA Private as your secret for

establishing the SSH tunnel
○ Password Authentication to use a password as your secret for establishing

the SSH tunnel Refer to Connect via SSH Tunnel for more information.
12.Click Set up source.

Connect via SSH Tunnel

You can connect to a AlloyDB instance via an SSH tunnel.

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (also called a bastion server) that has direct access to the database. Airbyte
connects to the bastion and then asks the bastion to connect directly to the server.

To connect to a AlloyDB instance via an SSH tunnel:
1. While setting up the AlloyDB source connector, from the SSH tunnel dropdown,

select:
○ SSH Key Authentication to use an RSA Private as your secret for

establishing the SSH tunnel
○ Password Authentication to use a password as your secret for establishing

the SSH Tunnel
2. For SSH Tunnel Jump Server Host, enter the hostname or IP address for the

intermediate (bastion) server that Airbyte will connect to.
3. For SSH Connection Port, enter the port on the bastion server. The default port

for SSH connections is 22.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/10/logical-replication.html

Unset

4. For SSH Login Username, enter the username to use when connecting to the
bastion server. Note: This is the operating system username and not the AlloyDB
username.

5. For authentication:
○ If you selected SSH Key Authentication, set the SSH Private Key to the

RSA Private Key that you are using to create the SSH connection.
○ If you selected Password Authentication, enter the password for the

operating system user to connect to the bastion server. Note: This is the
operating system password and not the AlloyDB password.

Generating an RSA Private Key

The connector expects an RSA key in PEM format. To generate this key, run:

ssh-keygen -t rsa -m PEM -f myuser_rsa

The command produces the private key in PEM format and the public key remains in
the standard format used by the authorized_keys file on your bastion server. Add
the public key to your bastion host to the user you want to use with Airbyte. The private
key is provided via copy-and-paste to the Airbyte connector configuration screen to
allow it to log into the bastion server.

Configuring AlloyDB connector with Change Data
Capture (CDC)
Airbyte uses logical replication of the Postgres write-ahead log (WAL) to incrementally
capture deletes using a replication plugin. To learn more how Airbyte implements CDC,
refer to Change Data Capture (CDC)

CDC Considerations

● Incremental sync is only supported for tables with primary keys. For tables
without primary keys, use Full Refresh sync.

● Data must be in tables and not views.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/10/logical-replication.html

Unset

● The modifications you want to capture must be made using
DELETE/INSERT/UPDATE. For example, changes made using TRUNCATE/ALTER
will not appear in logs and therefore in your destination.

● Schema changes are not supported automatically for CDC sources. Reset and
resync data if you make a schema change.

● The records produced by DELETE statements only contain primary keys. All other
data fields are unset.

● Log-based replication only works for master instances of AlloyDB.
● Using logical replication increases disk space used on the database server. The

additional data is stored until it is consumed.
○ Set frequent syncs for CDC to ensure that the data doesn't fill up your disk

space.
○ If you stop syncing a CDC-configured AlloyDB instance with Airbyte,

delete the replication slot. Otherwise, it may fill up your disk space.

Setting up CDC for AlloyDB

Airbyte requires a replication slot configured only for its use. Only one source should be
configured that uses this replication slot. See Setting up CDC for AlloyDB for
instructions.

Step 2: Select a replication plugin

We recommend using a pgoutput plugin (the standard logical decoding plugin in
AlloyDB). If the replication table contains multiple JSON blobs and the table size
exceeds 1 GB, we recommend using a wal2json instead. Note that wal2json may
require additional installation for Bare Metal, VMs (EC2/GCE/etc), Docker, etc. For more
information read the wal2json documentation.

Step 3: Create replication slot

To create a replication slot called airbyte_slot using pgoutput, run:

SELECT pg_create_logical_replication_slot('airbyte_slot',
'pgoutput');

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/9.6/logicaldecoding-output-plugin.html
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json

Unset

Unset

Unset

To create a replication slot called airbyte_slot using wal2json, run:

SELECT pg_create_logical_replication_slot('airbyte_slot',
'wal2json');

Step 4: Create publications and replication identities for tables

For each table you want to replicate with CDC, add the replication identity (the method
of distinguishing between rows) first:

To use primary keys to distinguish between rows, run:

ALTER TABLE tbl1 REPLICA IDENTITY DEFAULT;

After setting the replication identity, run:

CREATE PUBLICATION airbyte_publication FOR TABLE <tbl1,
tbl2, tbl3>;`

The publication name is customizable. Refer to the Postgres docs if you need to add or
remove tables from your publication in the future.
NOTE

You must add the replication identity before creating the publication. Otherwise,
ALTER/UPDATE/DELETE statements may fail if AlloyDB cannot determine how to
uniquely identify rows. Also, the publication should include all the tables and only the
tables that need to be synced. Otherwise, data from these tables may not be replicated
correctly.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/10/sql-alterpublication.html

DANGER

The Airbyte UI currently allows selecting any tables for CDC. If a table is selected that is
not part of the publication, it will not be replicated even though it is selected. If a table is
part of the publication but does not have a replication identity, that replication identity
will be created automatically on the first run if the Airbyte user has the necessary
permissions.

Step 5: [Optional] Set up initial waiting time
DANGER

This is an advanced feature. Use it if absolutely necessary.

The AlloyDB connector may need some time to start processing the data in the CDC
mode in the following scenarios:

● When the connection is set up for the first time and a snapshot is needed
● When the connector has a lot of change logs to process

The connector waits for the default initial wait time of 5 minutes (300 seconds). Setting
the parameter to a longer duration will result in slower syncs, while setting it to a shorter
duration may cause the connector to not have enough time to create the initial snapshot
or read through the change logs. The valid range is 120 seconds to 1200 seconds.

If you know there are database changes to be synced, but the connector cannot read
those changes, the root cause may be insufficient waiting time. In that case, you can
increase the waiting time (example: set to 600 seconds) to test if it is indeed the root
cause. On the other hand, if you know there are no database changes, you can
decrease the wait time to speed up the zero record syncs.

Step 6: Set up the AlloyDB source connector

In Step 2 of the connector setup guide, enter the replication slot and publication you just
created.

Supported sync modes
The AlloyDB source connector supports the following sync modes:

● Full Refresh - Overwrite
● Full Refresh - Append

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Incremental Sync - Append
● Incremental Sync - Deduped History

Supported cursors

● TIMESTAMP
● TIMESTAMP_WITH_TIMEZONE
● TIME
● TIME_WITH_TIMEZONE
● DATE
● BIT
● BOOLEAN
● TINYINT/SMALLINT
● INTEGER
● BIGINT
● FLOAT/DOUBLE
● REAL
● NUMERIC/DECIMAL
● CHAR/NCHAR/NVARCHAR/VARCHAR/LONGVARCHAR
● BINARY/BLOB

Data type mapping
The AlloyDb is a fully managed PostgreSQL-compatible database service.

According to Postgres documentation, Postgres data types are mapped to the following
data types when synchronizing data. You can check the test values examples here. If
you can't find the data type you are looking for or have any problems feel free to add a
new test!

Postgres Type Resulting
Type

Notes

bigint number

bigserial, number

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/14/datatype.html
https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-postgres/src/test-integration/java/io/airbyte/integrations/io/airbyte/integration_tests/sources/PostgresSourceDatatypeTest.java

serial8

bit string Fixed-length bit string (e.g. "0100").

bit varying,
varbit

string Variable-length bit string (e.g. "0100").

boolean, bool boolean

box string

bytea string Variable length binary string with hex output
format prefixed with "\x" (e.g. "\x6b707a").

character, char string

character
varying, varchar

string

cidr string

circle string

date string Parsed as ISO8601 date time at midnight. CDC
mode doesn't support era indicators. Issue:
#14590

double
precision, float,
float8

number Infinity, -Infinity, and NaN are not
supported and converted to null. Issue:
#8902.

hstore string

inet string

integer, int,
int4

number

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/14590
https://github.com/airbytehq/airbyte/issues/8902

interval string

json string

jsonb string

line string

lseg string

macaddr string

macaddr8 string

money number

numeric, decimal number Infinity, -Infinity, and NaN are not
supported and converted to null. Issue:
#8902.

path string

pg_lsn string

point string

polygon string

real, float4 number

smallint, int2 number

smallserial,
serial2

number

serial, serial4 number

text string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/8902

time string Parsed as a time string without a time-zone in
the ISO-8601 calendar system.

timetz string Parsed as a time string with time-zone in the
ISO-8601 calendar system.

timestamp string Parsed as a date-time string without a
time-zone in the ISO-8601 calendar system.

timestamptz string Parsed as a date-time string with time-zone in
the ISO-8601 calendar system.

tsquery string

tsvector string

uuid string

xml string

enum string

tsrange string

array array E.g. "[\"10001\",\"10002\",\"10003\",\"10004\"]".

composite type string

Limitations
● The AlloyDB source connector currently does not handle schemas larger than

4MB.
● The AlloyDB source connector does not alter the schema present in your

database. Depending on the destination connected to this source, however, the
schema may be altered. See the destination's documentation for more details.

● The following two schema evolution actions are currently supported:
○ Adding/removing tables without resetting the entire connection at the

destination Caveat: In the CDC mode, adding a new table to a connection
may become a temporary bottleneck. When a new table is added, the next

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

sync job takes a full snapshot of the new table before it proceeds to
handle any changes.

○ Resetting a single table within the connection without resetting the rest of
the destination tables in that connection

● Changing a column data type or removing a column might break connections.

Postgres
This page contains the setup guide and reference information for the Postgres source
connector for CDC and non-CDC workflows.

When to use Postgres with CDC
Configure Postgres with CDC if:

● You need a record of deletions
● Your table has a primary key but doesn't have a reasonable cursor field for

incremental syncing (updated_at). CDC allows you to sync your table
incrementally

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

If your goal is to maintain a snapshot of your table in the destination but the limitations
prevent you from using CDC, consider using non-CDC incremental sync and
occasionally reset the data and re-sync.

If your dataset is small and you just want a snapshot of your table in the destination,
consider using Full Refresh replication for your table instead of CDC.

Prerequisites
● For Airbyte Open Source users, upgrade your Airbyte platform to version

v0.40.0-alpha or newer
● Use Postgres v9.3.x or above for non-CDC workflows and Postgres v10 or above

for CDC workflows
● For Airbyte Cloud (and optionally for Airbyte Open Source), ensure SSL is

enabled in your environment

Setup guide

Step 1: (Optional) Create a dedicated read-only user

We recommend creating a dedicated read-only user for better permission control and
auditing. Alternatively, you can use an existing Postgres user in your database.

To create a dedicated user, run the following command:

CREATE USER <user_name> PASSWORD 'your_password_here';

Grant access to the relevant schema:

GRANT USAGE ON SCHEMA <schema_name> TO <user_name>

NOTE

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Unset

To replicate data from multiple Postgres schemas, re-run the command to grant access
to all the relevant schemas. Note that you'll need to set up multiple Airbyte sources
connecting to the same Postgres database on multiple schemas.

Grant the user read-only access to the relevant tables:

GRANT SELECT ON ALL TABLES IN SCHEMA <schema_name> TO
<user_name>;

Allow user to see tables created in the future:

ALTER DEFAULT PRIVILEGES IN SCHEMA <schema_name> GRANT
SELECT ON TABLES TO <user_name>;

Additionally, if you plan to configure CDC for the Postgres source connector, grant
REPLICATION permissions to the user:

ALTER USER <user_name> REPLICATION;

Syncing a subset of columns

Currently, there is no way to sync a subset of columns using the Postgres source
connector:

● When setting up a connection, you can only choose which tables to sync, but not
columns.

● If the user can only access a subset of columns, the connection check will pass.
However, the data sync will fail with a permission-denied exception.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

The workaround for partial table syncing is to create a view on the specific columns, and
grant the user read access to that view:

CREATE VIEW <view_name> as SELECT <columns> FROM <table>;

GRANT SELECT ON TABLE <view_name> IN SCHEMA <schema_name>
to <user_name>;

Note: The workaround works only for non-CDC setups since CDC requires data to be in
tables and not views. This issue is tracked in #9771.

Step 2: Set up the Postgres connector in Airbyte
1. Navigate back to Connect and create a new Source.
2. On the Set up the source page, select Postgres from the Source type dropdown.
3. Enter a name for your source.
4. For the Host, Port, and DB Name, enter the hostname, port number, and name

for your Postgres database.
5. List the Schemas you want to sync.

NOTE
The schema names are case-sensitive. The 'public' schema is set by default.
Multiple schemas may be used at one time. No schemas set explicitly - will sync
all of existing.

6. For User and Password, enter the username and password you created in Step
1.

7. To customize the JDBC connection beyond common options, specify additional
supported JDBC URL parameters as key-value pairs separated by the symbol &
in the JDBC URL Parameters (Advanced) field.
Example: key1=value1&key2=value2&key3=value3
These parameters will be added at the end of the JDBC URL that the AirByte will
use to connect to your Postgres database.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/9771
https://jdbc.postgresql.org/documentation/head/connect.html

The connector now supports connectTimeout and defaults to 60 seconds.
Setting connectTimeout to 0 seconds will set the timeout to the longest time
available.
Note: Do not use the following keys in JDBC URL Params field as they will be
overwritten by Airbyte: currentSchema, user, password, ssl, and sslmode.
DANGER
This is an advanced configuration option. Users are advised to use it with
caution.

8. For Airbyte Open Source, toggle the switch to connect using SSL. For Airbyte
Cloud uses SSL by default.

9. For SSL Modes, select:
○ disable to disable encrypted communication between Airbyte and the

source
○ allow to enable encrypted communication only when required by the

source
○ prefer to allow unencrypted communication only when the source doesn't

support encryption
○ require to always require encryption. Note: The connection will fail if the

source doesn't support encryption.
○ verify-ca to always require encryption and verify that the source has a

valid SSL certificate
○ verify-full to always require encryption and verify the identity of the source

10.For Replication Method, select Standard or Logical CDC from the dropdown.
Refer to Configuring Postgres connector with Change Data Capture (CDC) for
more information.

11. For SSH Tunnel Method, select:
○ No Tunnel for a direct connection to the database
○ SSH Key Authentication to use an RSA Private as your secret for

establishing the SSH tunnel
○ Password Authentication to use a password as your secret for establishing

the SSH tunnel
12.DANGER

Since Airbyte Cloud requires encrypted communication, select SSH Key
Authentication or Password Authentication if you selected disable, allow, or
prefer as the SSL Mode; otherwise, the connection will fail.

Refer to Connect via SSH Tunnel for more information. 13. Click Set up source.

Connect via SSH Tunnel

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/10/logical-replication.html

Unset

You can connect to a Postgres instance via an SSH tunnel.

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (also called a bastion or a jump server) that has direct access to the database.
Airbyte connects to the bastion and then asks the bastion to connect directly to the
server.

To connect to a Postgres instance via an SSH tunnel:
1. While setting up the Postgres source connector, from the SSH tunnel dropdown,

select:
○ SSH Key Authentication to use a private as your secret for establishing

the SSH tunnel
○ Password Authentication to use a password as your secret for establishing

the SSH Tunnel
2. For SSH Tunnel Jump Server Host, enter the hostname or IP address for the

intermediate (bastion) server that Airbyte will connect to.
3. For SSH Connection Port, enter the port on the bastion server. The default port

for SSH connections is 22.
4. For SSH Login Username, enter the username to use when connecting to the

bastion server. Note: This is the operating system username and not the
Postgres username.

5. For authentication:
○ If you selected SSH Key Authentication, set the SSH Private Key to the

private Key that you are using to create the SSH connection.
○ If you selected Password Authentication, enter the password for the

operating system user to connect to the bastion server. Note: This is the
operating system password and not the Postgres password.

Generating a Private Key

The connector supports any SSH compatible key format such as RSA or Ed25519. To
generate an RSA key, for example, run:

ssh-keygen -t rsa -m PEM -f myuser_rsa

The command produces the private key in PEM format and the public key remains in
the standard format used by the authorized_keys file on your bastion server. Add

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

the public key to your bastion host to the user you want to use with Airbyte. The private
key is provided via copy-and-paste to the Airbyte connector configuration screen to
allow it to log into the bastion server.

Configuring Postgres connector with Change Data
Capture (CDC)
Airbyte uses logical replication of the Postgres write-ahead log (WAL) to incrementally
capture deletes using a replication plugin. To learn more about how Airbyte implements
CDC, refer to Change Data Capture (CDC)

CDC Considerations

● Incremental sync is only supported for tables with primary keys. For tables
without primary keys, use Full Refresh sync.

● Data must be in tables and not views. If you require data synchronization from a
view, you would need to create a new connection with Standard as
Replication Method.

● The modifications you want to capture must be made using
DELETE/INSERT/UPDATE. For example, changes made using TRUNCATE/ALTER
will not appear in logs and therefore in your destination.

● Schema changes are not supported automatically for CDC sources. Reset and
resync data if you make a schema change.

● The records produced by DELETE statements only contain primary keys. All other
data fields are unset.

● Log-based replication only works for master instances of Postgres. CDC cannot
be run from a read-replica of your primary database.

● Using logical replication increases disk space used on the database server. The
additional data is stored until it is consumed.

○ Set frequent syncs for CDC to ensure that the data doesn't fill up your disk
space.

○ If you stop syncing a CDC-configured Postgres instance with Airbyte,
delete the replication slot. Otherwise, it may fill up your disk space.

CONNECTOR CONFIGURATION ARE SUPPORTED ONLY ON PRIMARY/MASTER
DB HOST/SERVERS. DO NOT POINT CONNECTOR CONFIGURATION TO REPLICA
DB HOSTS, IT WILL NOT WORK.. :::

Setting up CDC for Postgres

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/10/logical-replication.html

Airbyte requires a replication slot configured only for its use. Only one source should be
configured that uses this replication slot. See Setting up CDC for Postgres for
instructions.

Step 1: Enable logical replication

To enable logical replication on bare metal, VMs (EC2/GCE/etc), or Docker, configure
the following parameters in the postgresql.conf file for your Postgres database:

Parameter Description Set value to

wal_level Type of coding used
within the Postgres
write-ahead log

logical

max_wal_senders The maximum number of
processes used for
handling WAL changes

Min: 1

max_replication_sl
ots

The maximum number of
replication slots that are
allowed to stream WAL
changes

1 (if Airbyte is the only service
reading subscribing to WAL
changes. More than 1 if other
services are also reading from the
WAL)

To enable logical replication on AWS Postgres RDS or Aurora :

1. Go to the Configuration tab for your DB cluster.
2. Find your cluster parameter group. Either edit the parameters for this group or

create a copy of this parameter group to edit. If you create a copy, change your
cluster's parameter group before restarting.

3. Within the parameter group page, search for rds.logical_replication.
Select this row and click Edit parameters. Set this value to 1.

4. Wait for a maintenance window to automatically restart the instance or restart it
manually.

To enable logical replication on Azure Database for Postgres :

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/current/config-setting.html

Unset

Unset

Unset

Change the replication mode of your Postgres DB on Azure to logical using the
Replication menu of your PostgreSQL instance in the Azure Portal. Alternatively, use
the Azure CLI to run the following command:

az postgres server configuration set --resource-group group
--server-name server --name azure.replication_support
--value logical

az postgres server restart --resource-group group --name
server

Step 3: Create replication slot

Airbyte currently supports pgoutput plugin only. To create a replication slot called
airbyte_slot using pgoutput, run:

SELECT pg_create_logical_replication_slot('airbyte_slot',
'pgoutput');

Step 4: Create publications and replication identities for tables

For each table you want to replicate with CDC, add the replication identity (the method
of distinguishing between rows) first:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Unset

To use primary keys to distinguish between rows for tables that don't have a large
amount of data per row, run:

ALTER TABLE tbl1 REPLICA IDENTITY DEFAULT;

In case your tables use data types that support TOAST and have very large field values,
use:

ALTER TABLE tbl1 REPLICA IDENTITY FULL;

After setting the replication identity, run:

CREATE PUBLICATION airbyte_publication FOR TABLE <tbl1,
tbl2, tbl3>;`

The publication name is customizable. Refer to the Postgres docs if you need to add or
remove tables from your publication in the future.

You must add the replication identity before creating the publication. Otherwise,
ALTER/UPDATE/DELETE statements may fail if Postgres cannot determine how to
uniquely identify rows. Also, the publication should include all the tables and only the
tables that need to be synced. Otherwise, data from these tables may not be replicated
correctly. :::
DANGER

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/current/storage-toast.html
https://www.postgresql.org/docs/10/sql-alterpublication.html

The Airbyte UI currently allows selecting any tables for CDC. If a table is selected that is
not part of the publication, it will not be replicated even though it is selected. If a table is
part of the publication but does not have a replication identity, that replication identity
will be created automatically on the first run if the Airbyte user has the necessary
permissions.

Step 5: [Optional] Set up initial waiting time
DANGER

This is an advanced feature. Use it if absolutely necessary.

The Postgres connector may need some time to start processing the data in the CDC
mode in the following scenarios:

● When the connection is set up for the first time and a snapshot is needed
● When the connector has a lot of change logs to process

The connector waits for the default initial wait time of 5 minutes (300 seconds). Setting
the parameter to a longer duration will result in slower syncs, while setting it to a shorter
duration may cause the connector to not have enough time to create the initial snapshot
or read through the change logs. The valid range is 120 seconds to 1200 seconds.

If you know there are database changes to be synced, but the connector cannot read
those changes, the root cause may be insufficient waiting time. In that case, you can
increase the waiting time (example: set to 600 seconds) to test if it is indeed the root
cause. On the other hand, if you know there are no database changes, you can
decrease the wait time to speed up the zero record syncs.

Step 6: Set up the Postgres source connector

In Step 2 of the connector setup guide, enter the replication slot and publication you just
created.

Supported sync modes
The Postgres source connector supports the following sync modes:

● Full Refresh - Overwrite
● Full Refresh - Append
● Incremental Sync - Append
● Incremental Sync - Deduped History

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Supported cursors

● TIMESTAMP
● TIMESTAMP_WITH_TIMEZONE
● TIME
● TIME_WITH_TIMEZONE
● DATE
● BIT
● BOOLEAN
● TINYINT/SMALLINT
● INTEGER
● BIGINT
● FLOAT/DOUBLE
● REAL
● NUMERIC/DECIMAL
● CHAR/NCHAR/NVARCHAR/VARCHAR/LONGVARCHAR
● BINARY/BLOB

Data type mapping
According to Postgres documentation, Postgres data types are mapped to the following
data types when synchronizing data. You can check the test values examples here. If
you can't find the data type you are looking for or have any problems feel free to add a
new test!

Postgres Type Resultin
g Type

Notes

bigint number

bigserial,
serial8

number

bit string Fixed-length bit string (e.g. "0100").

bit varying, string Variable-length bit string (e.g. "0100").

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/14/datatype.html
https://github.com/airbytehq/airbyte/blob/master/airbyte-integrations/connectors/source-postgres/src/test-integration/java/io/airbyte/integrations/io/airbyte/integration_tests/sources/PostgresSourceDatatypeTest.java

varbit

boolean, bool boolean

box string

bytea string Variable length binary string with hex output format
prefixed with "\x" (e.g. "\x6b707a").

character, char string

character
varying, varchar

string

cidr string

circle string

date string Parsed as ISO8601 date time at midnight. CDC
mode doesn't support era indicators. Issue: #14590

double
precision, float,
float8

number Infinity, -Infinity, and NaN are not
supported and converted to null. Issue: #8902.

hstore string

inet string

integer, int,
int4

number

interval string

json string

jsonb string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/14590
https://github.com/airbytehq/airbyte/issues/8902

line string

lseg string

macaddr string

macaddr8 string

money number

numeric, decimal number Infinity, -Infinity, and NaN are not
supported and converted to null. Issue: #8902.

path string

pg_lsn string

point string

polygon string

real, float4 number

smallint, int2 number

smallserial,
serial2

number

serial, serial4 number

text string

time string Parsed as a time string without a time-zone in the
ISO-8601 calendar system.

timetz string Parsed as a time string with time-zone in the
ISO-8601 calendar system.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/8902

timestamp string Parsed as a date-time string without a time-zone in
the ISO-8601 calendar system.

timestamptz string Parsed as a date-time string with time-zone in the
ISO-8601 calendar system.

tsquery string

tsvector string

uuid string

xml string

enum string

tsrange string

array array E.g. "[\"10001\",\"10002\",\"10003\",\"10004\"]".

composite type string

Limitations
● The Postgres source connector currently does not handle schemas larger than

4MB.
● The Postgres source connector does not alter the schema present in your

database. Depending on the destination connected to this source, however, the
schema may be altered. See the destination's documentation for more details.

● The following two schema evolution actions are currently supported:
○ Adding/removing tables without resetting the entire connection at the

destination Caveat: In the CDC mode, adding a new table to a connection
may become a temporary bottleneck. When a new table is added, the next
sync job takes a full snapshot of the new table before it proceeds to
handle any changes.

○ Resetting a single table within the connection without resetting the rest of
the destination tables in that connection

● Changing a column data type or removing a column might break connections.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Troubleshooting

Sync data from Postgres hot standby server

When the connector is reading from a Postgres replica that is configured as a Hot
Standby, any update from the primary server will terminate queries on the replica after a
certain amount of time, default to 30 seconds. This default waiting time is not enough to
sync any meaning amount of data. See the Handling Query Conflicts section in
the Postgres documentation for detailed explanation.

Here is the typical exception:

Caused by: org.postgresql.util.PSQLException: FATAL:
terminating connection due to conflict with recovery

Detail: User query might have needed to see row versions
that must be removed.

Hint: In a moment you should be able to reconnect to the
database and repeat your command.

Possible solutions include:

● [Recommended] Set hot_standby_feedback to true on the replica server.
This parameter will prevent the primary server from deleting the write-ahead logs
when the replica is busy serving user queries. However, the downside is that the
write-ahead log will increase in size.

● [Recommended] Sync data when there is no update running in the primary
server, or sync data from the primary server.

● [Not Recommended] Increase max_standby_archive_delay and
max_standby_streaming_delay to be larger than the amount of time needed
to complete the data sync. However, it is usually hard to tell how much time it will
take to sync all the data. This approach is not very practical.

Under CDC incremental mode, there are still full refresh syncs

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/14/hot-standby.html#HOT-STANDBY-CONFLICT
https://www.postgresql.org/docs/14/runtime-config-replication.html#GUC-HOT-STANDBY-FEEDBACK
https://www.postgresql.org/docs/14/runtime-config-replication.html#GUC-MAX-STANDBY-ARCHIVE-DELAY
https://www.postgresql.org/docs/14/runtime-config-replication.html#GUC-MAX-STANDBY-STREAMING-DELAY

Normally under the CDC mode, the Postgres source will first run a full refresh sync to
read the snapshot of all the existing data, and all subsequent runs will only be
incremental syncs reading from the write-ahead logs (WAL). However, occasionally, you
may see full refresh syncs after the initial run. When this happens, you will see the
following log:
Saved offset is before Replication slot's confirmed_flush_lsn, Airbyte will trigger sync
from scratch

The root causes is that the WALs needed for the incremental sync has been removed
by Postgres. This can occur under the following scenarios:

● When there are lots of database updates resulting in more WAL files than
allowed in the pg_wal directory, Postgres will purge or archive the WAL files.
This scenario is preventable. Possible solutions include:

○ Sync the data source more frequently. The downside is that more
computation resources will be consumed, leading to a higher Airbyte bill.

○ Set a higher wal_keep_size. If no unit is provided, it is in megabytes,
and the default is 0. See detailed documentation here. The downside of
this approach is that more disk space will be needed.

● When the Postgres connector successfully reads the WAL and acknowledges it
to Postgres, but the destination connector fails to consume the data, the
Postgres connector will try to read the same WAL again, which may have been
removed by Postgres, since the WAL record is already acknowledged. This
scenario is rare, because it can happen, and currently there is no way to prevent
it. The correct behavior is to perform a full refresh.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-WAL-KEEP-SIZE

Kafka
This page guides you through the process of setting up the Kafka source connector.

Set up guide

Step 1: Set up Kafka

To use the Kafka source connector, you'll need:

● A Kafka cluster 1.0 or above
● Airbyte user should be allowed to read messages from topics, and these topics

should be created before reading from Kafka.

Step 2: Setup the Kafka source in Airbyte

You'll need the following information to configure the Kafka source:

● Group ID - The Group ID is how you distinguish different consumer groups. (e.g.
group.id)

● Protocol - The Protocol used to communicate with brokers.
● Client ID - An ID string to pass to the server when making requests. The purpose

of this is to be able to track the source of requests beyond just ip/port by allowing
a logical application name to be included in server-side request logging. (e.g.
airbyte-consumer)

● Test Topic - The Topic to test in case the Airbyte can consume messages. (e.g.
test.topic)

● Subscription Method - You can choose to manually assign a list of partitions, or
subscribe to all topics matching specified pattern to get dynamically assigned
partitions.

● List of topic

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://kafka.apache.org/quickstart

● Bootstrap Servers - A list of host/port pairs to use for establishing the initial
connection to the Kafka cluster.

● Schema Registry - Host/port to connect schema registry server. Note: It supports
for AVRO format only.

For Airbyte Open Source:
1. Go to the Airbyte UI and in the left navigation bar, click Sources. In the top-right

corner, click +new source.
2. On the Set up the source page, enter the name for the Kafka connector and

select Kafka from the Source type dropdown.
3. Follow the Setup the Kafka source in Airbyte

Supported sync modes
The Kafka source connector supports the following sync modes:

Feature Supported?(Yes/No) Notes

Full Refresh Sync Yes

Incremental - Append
Sync

Yes

Namespaces No

Supported Format
JSON - Json value messages. It does not support schema registry now.

AVRO - deserialize Using confluent API. Please refer
(https://docs.confluent.io/platform/current/schema-registry/serdes-develop/serdes-avro.
html)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.confluent.io/platform/current/schema-registry/serdes-develop/serdes-avro.html
https://docs.confluent.io/platform/current/schema-registry/serdes-develop/serdes-avro.html

ClickHouse

Overview
The ClickHouse source supports both Full Refresh and Incremental syncs. You can
choose if this connector will copy only the new or updated data, or all rows in the tables
and columns you set up for replication, every time a sync is run.

This Clickhouse source connector is built on top of the source-jdbc code base and is
configured to rely on JDBC v0.3.1 standard drivers provided by ClickHouse here as
described in ClickHouse documentation here.

Resulting schema

The ClickHouse source does not alter the schema present in your warehouse.
Depending on the destination connected to this source, however, the schema may be
altered. See the destination's documentation for more details.

Features

Feature Supported Notes

Full Refresh Sync Yes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/ClickHouse/clickhouse-jdbc
https://clickhouse.tech/docs/en/interfaces/jdbc/

Incremental Sync Yes

Replicate Incremental
Deletes

Coming
soon

Logical Replication (WAL) Coming
soon

SSL Support Yes

SSH Tunnel Connection Yes

Namespaces Yes Enabled by
default

Getting started

Requirements
1. ClickHouse Server 21.3.10.1 or later.
2. Create a dedicated read-only Airbyte user with access to all tables needed for

replication

Setup guide

1. Make sure your database is accessible from the machine running Airbyte

This is dependent on your networking setup. The easiest way to verify if Airbyte is able
to connect to your ClickHouse instance is via the check connection tool in the UI.

2. Create a dedicated read-only user with access to the relevant tables
(Recommended but optional)

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

To create a dedicated database user, run the following commands against your
database:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

CREATE USER 'airbyte'@'%' IDENTIFIED BY
'your_password_here';

Then give it access to the relevant schema:

GRANT SELECT ON <database name>.* TO 'airbyte'@'%';

You can limit this grant down to specific tables instead of the whole database. Note that
to replicate data from multiple ClickHouse databases, you can re-run the command
above to grant access to all the relevant schemas, but you'll need to set up multiple
sources connecting to the same db on multiple schemas.

Your database user should now be ready for use with Airbyte.

Connection via SSH Tunnel
Airbyte has the ability to connect to a Clickhouse instance via an SSH Tunnel. The
reason you might want to do this because it is not possible (or against security policy) to
connect to the database directly (e.g. it does not have a public IP address).

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (a.k.a. a bastion sever) that does have direct access to the database. Airbyte
connects to the bastion and then asks the bastion to connect directly to the server.

Using this feature requires additional configuration, when creating the source. We will
talk through what each piece of configuration means.

1. Configure all fields for the source as you normally would, except SSH Tunnel
Method.

2. SSH Tunnel Method defaults to No Tunnel (meaning a direct connection). If
you want to use an SSH Tunnel choose SSH Key Authentication or
Password Authentication.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

i. Choose Key Authentication if you will be using an RSA private key
as your secret for establishing the SSH Tunnel (see below for more
information on generating this key).

ii. Choose Password Authentication if you will be using a password as
your secret for establishing the SSH Tunnel.

3. SSH Tunnel Jump Server Host refers to the intermediate (bastion) server
that Airbyte will connect to. This should be a hostname or an IP Address.

4. SSH Connection Port is the port on the bastion server with which to make
the SSH connection. The default port for SSH connections is 22, so unless you
have explicitly changed something, go with the default.

5. SSH Login Username is the username that Airbyte should use when
connection to the bastion server. This is NOT the Clickhouse username.

6. If you are using Password Authentication, then SSH Login Username
should be set to the password of the User from the previous step. If you are
using SSH Key Authentication leave this blank. Again, this is not the
Clickhouse password, but the password for the OS-user that Airbyte is using to
perform commands on the bastion.

7. If you are using SSH Key Authentication, then SSH Private Key should
be set to the RSA Private Key that you are using to create the SSH connection.
This should be the full contents of the key file starting with -----BEGIN RSA
PRIVATE KEY----- and ending with -----END RSA PRIVATE KEY-----.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

CockroachDB

Overview
The CockroachDB source supports both Full Refresh and Incremental syncs. You can
choose if this connector will copy only the new or updated data, or all rows in the tables
and columns you set up for replication, every time a sync is run.

Resulting schema

The CockroachDb source does not alter the schema present in your database.
Depending on the destination connected to this source, however, the schema may be
altered. See the destination's documentation for more details.

Data type mapping

CockroachDb data types are mapped to the following data types when synchronizing
data:

CockroachDb Type Resulting
Type

Notes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

bigint integer

bit boolean

boolean boolean

character string

character
varying

string

date string

double precision string

enum number

inet string

int integer

json string

jsonb string

numeric number

smallint integer

text string

time with
timezone

string may be written as a native date type depending
on the destination

time without
timezone

string may be written as a native date type depending
on the destination

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

timestamp with
timezone

string may be written as a native date type depending
on the destination

timestamp
without timezone

string may be written as a native date type depending
on the destination

uuid string

Note: arrays for all the above types as well as custom types are supported, although
they may be de-nested depending on the destination.

Features

Feature Support
ed

Note
s

Full Refresh Sync Yes

Incremental Sync Yes

Change Data
Capture

No

SSL Support Yes

Getting started

Requirements
1. CockroachDb v1.15.x or above
2. Allow connections from Airbyte to your CockroachDb database (if they exist in

separate VPCs)
3. Create a dedicated read-only Airbyte user with access to all tables needed for

replication

Setup guide

1. Make sure your database is accessible from the machine running Airbyte

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Unset

This is dependent on your networking setup. The easiest way to verify if Airbyte is able
to connect to your CockroachDb instance is via the check connection tool in the UI.

2. Create a dedicated read-only user with access to the relevant tables
(Recommended but optional)

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

To create a dedicated database user, run the following commands against your
database:

CREATE USER airbyte PASSWORD 'your_password_here';

Then give it access to the relevant schema:

GRANT USAGE ON SCHEMA <schema_name> TO airbyte

Note that to replicate data from multiple CockroachDb schemas, you can re-run the
command above to grant access to all the relevant schemas, but you'll need to set up
multiple sources connecting to the same db on multiple schemas.

Next, grant the user read-only access to the relevant tables. The simplest way is to
grant read access to all tables in the schema as follows:

GRANT SELECT ON ALL TABLES IN SCHEMA <schema_name> TO
airbyte;

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Allow airbyte user to see tables created in the future

ALTER DEFAULT PRIVILEGES IN SCHEMA <schema_name> GRANT
SELECT ON TABLES TO airbyte;

3. That's it!

Your database user should now be ready for use with Airbyte.

Convex
This page contains the setup guide and reference information for the Convex source
connector.

Get started with Convex at the Convex website. See your data on the Convex
dashboard.

Overview
The Convex source connector supports Full Refresh, Incremental Append, and
Incremental Dedupe with deletes.

Output schema

This source syncs each Convex table as a separate stream. Check out the list of your
tables on the Convex dashboard in the "Data" view.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://convex.dev/
https://dashboard.convex.dev/
https://dashboard.convex.dev/
https://dashboard.convex.dev/

Types not directly supported by JSON are encoded as described in the JSONSchema
for the stream.

For example, the Javascript value new Set(["a", "b"]) is encoded as {"$set":
["a", "b"]}, as described by the JSONSchema {"type": "object",
"description": "Set", "properties": {"$set": {"type": "array",
"items": {"type": "string"}}}}.

Every record includes the client-defined fields for the table, for example a "messages"
table may contain fields for "author" and "body". Additionally, each document has
system fields:

1. _id uniquely identifies the document. It is not changed by .patch or .replace
operations.

2. _creationTime records a timestamp in milliseconds when the document was
initially created. It is not changed by .patch or .replace operations.

3. _ts records a timestamp in nanoseconds when the document was last modified.
It can be used for ordering operations in Incremental Append mode, and is
automatically used in Incremental Dedupe mode.

4. _deleted identifies whether the document was deleted. It can be used to filter
deleted documents in Incremental Append mode, and is automatically used to
remove documents in Incremental Dedupe mode.

Features

Feature Supported?

Full Refresh Sync

Yes

Incremental - Append
Sync

Yes

Incremental - Dedupe
Sync

Yes

Replicate Incremental Yes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://json-schema.org/understanding-json-schema/reference/index.html

Deletes

Change Data Capture Yes

Namespaces No

Performance considerations

The Convex connector syncs all documents from the historical log. If you see
performance issues due to syncing unnecessary old versions of documents, please
reach out to Convex support.

Getting started

Requirements

● Convex Account
● Convex Project
● Deploy key

Setup guide

Airbyte integration is available to Convex teams on Professional plans.

On the Convex dashboard, navigate to the project that you want to sync. Note only
"Production" deployments should be synced.

In the Data tab, you should see the tables and a sample of the data that will be synced.
1. Navigate to the Settings tab.
2. Copy the "Deployment URL" from the settings page to the deployment_url

field in Airbyte.
3. Click "Generate a deploy key".
4. Copy the generated deploy key into the access_key field in Airbyte.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.convex.dev/plans
https://dashboard.convex.dev/

Elasticsearch
This page contains the setup guide and reference information for the Elasticsearch
source connector.

Prerequisites

Requirements

● Elasticsearch endpoint URL
● Elasticsearch credentials (optional)

Supported sync modes

Feature Supported?(Yes/No) Notes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Full Refresh
Sync

Yes

Incremental
Sync

No

This source syncs data from an ElasticSearch domain.

Supported Streams
This source automatically discovers all indices in the domain and can sync any of them.

Performance Considerations
ElasticSearch calls may be rate limited by the underlying service. This is specific to
each deployment.

Data type map
Elasticsearch data types:
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html

Airbyte Data Types

In Elasticsearch, there is no dedicated array data type. Any field can contain zero or
more values by default, however, all values in the array must be of the same data type.
Hence, every field can be an array as well.

Integration Type Airbyte Type Note
s

binary

["string", "array"]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html

boolean ["boolean", "array"]

keyword ["string", "array",
"number", "integer"]

constant_keyword ["string", "array",
"number", "integer"]

wildcard ["string", "array",
"number", "integer"]

long ["integer", "array"]

unsigned_long ["integer", "array"]

integer ["integer", "array"]

short ["integer", "array"]

byte ["integer", "array"]

double ["number", "array"]

float ["number", "array"]

half_float ["number", "array"]

scaled_float ["number", "array"]

date ["string", "array"]

date_nanos ["number", "array"]

object ["object", "array"]

flattened ["object", "array"]

nested ["object", "string"]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

join ["object", "string"]

integer_range ["object", "array"]

float_range ["object", "array"]

long_range ["object", "array"]

double_range ["object", "array"]

date_range ["object", "array"]

ip_range ["object", "array"]

ip ["string", "array"]

version ["string", "array"]

murmur3 ["string", "array",
"number", "integer"]

aggregate_metric_
double

["string", "array",
"number", "integer"]

histogram ["string", "array",
"number", "integer"]

text ["string", "array",
"number", "integer"]

alias ["string", "array",
"number", "integer"]

search_as_you_typ
e

["string", "array",
"number", "integer"]

token_count ["string", "array",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"number", "integer"]

dense_vector ["string", "array",
"number", "integer"]

geo_point ["string", "array",
"number", "integer"]

geo_shape ["string", "array",
"number", "integer"]

shape ["string", "array",
"number", "integer"]

point ["string", "array",
"number", "integer"]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Fauna
This page guides you through setting up a Fauna source.

Overview
The Fauna source supports the following sync modes:

● Full Sync - exports all the data from a Fauna collection.
● Incremental Sync - exports data incrementally from a Fauna collection.

You need to create a separate source per collection that you want to export.

Preliminary setup
Enter the domain of the collection's database that you are exporting. The URL can be
found in the docs.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://fauna.com/
https://docs.fauna.com/fauna/current/learn/understanding/region_groups#how-to-use-region-groups

Unset

Full sync
Follow these steps if you want this connection to perform a full sync.

1. Create a role that can read the collection that you are exporting. You can create
the role in the Dashboard or the fauna shell with the following query:

CreateRole({

name: "airbyte-readonly",

privileges: [

{

resource: Collections(),

actions: { read: true }

},

{

resource: Indexes(),

actions: { read: true }

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://dashboard.fauna.com/
https://github.com/fauna/fauna-shell

Unset

},

{

resource: Collection("COLLECTION_NAME"),

actions: { read: true }

}

],

})

Replace COLLECTION_NAME with the name of the collection configured for this
connector. If you'd like to sync multiple collections, add an entry for each additional
collection you'd like to sync. For example, to sync users and products, run this query
instead:

CreateRole({

name: "airbyte-readonly",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

privileges: [

{

resource: Collections(),

actions: { read: true }

},

{

resource: Indexes(),

actions: { read: true }

},

{

resource: Collection("users"),

actions: { read: true }

},

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

{

resource: Collection("products"),

actions: { read: true }

}

],

})

2. Create a key with that role. You can create a key using this query:

CreateKey({

name: "airbyte-readonly",

role: Role("airbyte-readonly"),

})

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

3. Copy the secret output by the CreateKey command and enter that as the
"Fauna Secret" on the left. Important: The secret is only ever displayed once. If
you lose it, you would have to create a new key.

Incremental sync
Follow these steps if you want this connection to perform incremental syncs.

1. Create the "Incremental Sync Index". This allows the connector to perform
incremental syncs. You can create the index with the fauna shell or in the
Dashboard with the following query:

CreateIndex({

name: "INDEX_NAME",

source: Collection("COLLECTION_NAME"),

terms: [],

values: [

{ "field": "ts" },

{ "field": "ref" }

]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/fauna/fauna-shell
https://dashboard.fauna.com/

Unset

})

Replace COLLECTION_NAME with the name of the collection configured for this
connector. Replace INDEX_NAME with the name that you configured for the Incremental
Sync Index.

Repeat this step for every collection you'd like to sync.
2. Create a role that can read the collection, the index, and the metadata of all

indexes. It needs access to index metadata in order to validate the index
settings. You can create the role with this query:

CreateRole({

name: "airbyte-readonly",

privileges: [

{

resource: Collections(),

actions: { read: true }

},

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

{

resource: Indexes(),

actions: { read: true }

},

{

resource: Collection("COLLECTION_NAME"),

actions: { read: true }

},

{

resource: Index("INDEX_NAME"),

actions: { read: true }

}

],

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

})

Replace COLLECTION_NAME with the name of the collection configured for this
connector. Replace INDEX_NAME with the name that you configured for the Incremental
Sync Index.

If you'd like to sync multiple collections, add an entry for every collection and index
you'd like to sync. For example, to sync users and products with Incremental Sync,
run the following query:

CreateRole({

name: "airbyte-readonly",

privileges: [

{

resource: Collections(),

actions: { read: true }

},

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

{

resource: Indexes(),

actions: { read: true }

},

{

resource: Collection("users"),

actions: { read: true }

},

{

resource: Index("users-ts"),

actions: { read: true }

},

{

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

resource: Collection("products"),

actions: { read: true }

},

{

resource: Index("products-ts"),

actions: { read: true }

}

],

})

3. Create a key with that role. You can create a key using this query:

CreateKey({

name: "airbyte-readonly",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

role: Role("airbyte-readonly"),

})

4. Copy the secret output by the CreateKey command and enter that as the
"Fauna Secret" on the left. Important: The secret is only ever displayed once. If
you lose it, you would have to create a new key.

Export formats
This section captures export formats for all special case data stored in Fauna. This list
is exhaustive.

Note that the ref column in the exported database contains only the document ID from
each document's reference (or "ref"). Since only one collection is involved in each
connector configuration, it is inferred that the document ID refers to a document within
the synced collection.

Fauna
Type

Format Note

Document
Ref

{ id: "id", "collection":
"collection-name", "type":
"document" }

Other Ref { id: "id", "type": "ref-type"
}

This includes all other refs,
listed below.

Byte Array base64 url formatting

Timestamp date-time, or an iso-format timestamp

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.fauna.com/fauna/current/learn/understanding/types#ref
https://docs.fauna.com/fauna/current/learn/understanding/types#ref
https://docs.fauna.com/fauna/current/learn/understanding/types#ref
https://docs.fauna.com/fauna/current/learn/understanding/types#byte
https://docs.fauna.com/fauna/current/learn/understanding/types#date

Query,
SetRef

a string containing the wire protocol of this
value

The wire protocol is not
documented.

Ref types

Every ref is serialized as a JSON object with 2 or 3 fields, as listed above. The type
field must be one of these strings:

Reference
Type

type string

Document

"document"

Collection "collection"

Database "database"

Index "index"

Function "function"

Role "role"

AccessProvid
er

"access_prov
ider"

Key "key"

Token "token"

Credential "credential"

For all other refs (for example if you stored the result of Collections()), the type
must be "unknown". There is a difference between a specific collection ref (retrieved
with Collection("name")), and all the reference to all collections (retrieved with

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.fauna.com/fauna/current/learn/understanding/types#set
https://docs.fauna.com/fauna/current/learn/understanding/types#set
https://docs.fauna.com/fauna/current/api/fql/functions/collection
https://docs.fauna.com/fauna/current/api/fql/functions/database
https://docs.fauna.com/fauna/current/api/fql/functions/iindex
https://docs.fauna.com/fauna/current/api/fql/functions/function
https://docs.fauna.com/fauna/current/api/fql/functions/role
https://docs.fauna.com/fauna/current/api/fql/functions/accessprovider
https://docs.fauna.com/fauna/current/api/fql/functions/accessprovider
https://docs.fauna.com/fauna/current/api/fql/functions/keys
https://docs.fauna.com/fauna/current/api/fql/functions/tokens
https://docs.fauna.com/fauna/current/api/fql/functions/credentials

Collections()). This is why the type is "unknown" for Collections(), but not
for Collection("name")

To select the document ID from a ref, add "id" to the "Path" of the additional column.
For example, if "Path" is ["data", "parent"], change the "Path" to ["data",
"parent", "id"].

To select the collection name, add "collection", "id" to the "Path" of the
additional column. For example, if "Path" is ["data", "parent"], change the "Path"
to ["data", "parent", "collection", "id"]. Internally, the FQL Select is
used.

Firebase Realtime Database

Overview
The Firebase Realtime Database source supports Full Refresh sync. As the database
data is stored as JSON objects and there are no records or tables, you can sync only
one stream which you specifed as a JSON node path on your database at a time.

Resulting schema

As mentioned above, fetched data is just a JSON objects. The resulting records
conformed of two columns key and value. The key's value is keys (string) of fetched
JSON object. The value's value is string representation of values (string representation
of any JSON object) of fetched JSON object.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.fauna.com/fauna/current/api/fql/functions/select

Unset

Unset

If your database has data as below at path
https://{your-database-name}.firebaseio.com/store-a/users.json ...

{

"liam": {"address": "somewhere", "age": 24},

"olivia": {"address": "somewhere", "age": 30}

}

and you specified a store-a/users as a path in configuration, you would sync
records like below ...

{"key": "liam", "value": "{\"address\": \"somewhere\",
\"age\": 24}}"}

{"key": "olivia", "value": "{\"address\": \"somewhere\",
\"age\": 30}}"}

Features

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Feature Supported Notes

Full Refresh Sync

Yes

Incremental Sync No

Change Data
Capture

No

SSL Support Yes

Getting started

Requirements

To use the Firebase Realtime Database source, you'll need:

● A Google Cloud Project with Firebase enabled
● A Google Cloud Service Account with the "Firebase Realtime Database Viewer"

roles in your Google Cloud project
● A Service Account Key to authenticate into your Service Account

See the setup guide for more information about how to create the required resources.

Service account

In order for Airbyte to sync data from Firebase Realtime Database, it needs credentials
for a Service Account with the "Firebase Realtime Database Viewer" roles, which grants
permissions to read from Firebase Realtime Database. We highly recommend that this
Service Account is exclusive to Airbyte for ease of permissioning and auditing.
However, you can use a pre-existing Service Account if you already have one with the
correct permissions.

The easiest way to create a Service Account is to follow Google Cloud's guide for
Creating a Service Account. Once you've created the Service Account, make sure to

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts

keep its ID handy as you will need to reference it when granting roles. Service Account
IDs typically take the form
<account-name>@<project-name>.iam.gserviceaccount.com

Then, add the service account as a Member in your Google Cloud Project with the
"Firebase Realtime Database Viewer" role. To do this, follow the instructions for
Granting Access in the Google documentation. The email address of the member you
are adding is the same as the Service Account ID you just created.

At this point you should have a service account with the "Firebase Realtime Database"
product-level permission.

Service account key

Service Account Keys are used to authenticate as Google Service Accounts. For
Airbyte to leverage the permissions you granted to the Service Account in the previous
step, you'll need to provide its Service Account Keys. See the Google documentation for
more information about Keys.

Follow the Creating and Managing Service Account Keys guide to create a key. Airbyte
currently supports JSON Keys only, so make sure you create your key in that format. As
soon as you created the key, make sure to download it, as that is the only time Google
will allow you to see its contents. Once you've successfully configured Firebase
Realtime Database as a source in Airbyte, delete this key from your computer.

Setup the Firebase Realtime Database source in Airbyte

You should now have all the requirements needed to configure Firebase Realtime
Database as a source in the UI. You'll need the following information to configure the
Firebase Realtime Database source:

● Database Name
● Service Account Key JSON: the contents of your Service Account Key JSON file.
● Node Path [Optional]: node path in your database's data which you want to sync.

default value is ""(root node).
● Buffer Size [Optional]: number of records to fetch at one time (buffered). default

value is 10000.

Once you've configured Firebase Realtime Database as a source, delete the Service
Account Key from your computer.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/granting-changing-revoking-access#granting-console
https://cloud.google.com/iam/docs/service-accounts#service_account_keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

Db2

Overview
The IBM Db2 source allows you to sync data from Db2. It supports both Full Refresh
and Incremental syncs. You can choose if this connector will copy only the new or
updated data, or all rows in the tables and columns you set up for replication, every time
a sync is run.

This IBM Db2 source connector is built on top of the IBM Data Server Driver for JDBC
and SQLJ. It is a pure-Java driver (Type 4) that supports the JDBC 4 specification as
described in IBM Db2 documentation.

Resulting schema

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://mvnrepository.com/artifact/com.ibm.db2/jcc/11.5.5.0
https://www.ibm.com/docs/en/db2/11.5?topic=apis-supported-drivers-jdbc-sqlj

The IBM Db2 source does not alter the schema present in your warehouse. Depending
on the destination connected to this source, however, the result schema may be altered.
See the destination's documentation for more details.

Features

Feature Supported?(Yes/No) Notes

Full Refresh Sync

Yes

Incremental - Append
Sync

Yes

Namespaces Yes

Getting started

Requirements
1. You'll need the following information to configure the IBM Db2 source:
2. Host
3. Port
4. Database
5. Username
6. Password
7. Create a dedicated read-only Airbyte user and role with access to all schemas

needed for replication.

Setup guide

1. Specify the port, host, and name of the database.

2. Create a dedicated read-only user with access to the relevant schemas
(Recommended but optional)

This step is optional but highly recommended allowing for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Please create a dedicated database user and run the following commands against your
database:

-- create Airbyte role

CREATE ROLE 'AIRBYTE_ROLE';

-- grant Airbyte database access

GRANT CONNECT ON 'DATABASE' TO ROLE 'AIRBYTE_ROLE'

GRANT ROLE 'AIRBYTE_ROLE' TO USER 'AIRBYTE_USER'

Your database user should now be ready for use with Airbyte.

3. Create SSL connection.

To set up an SSL connection, you need to use a client certificate. Add it to the "SSL
PEM file" field and the connector will automatically add it to the secret keystore. You can
also enter your own password for the keystore, but if you don't, the password will be
generated automatically.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Microsoft Dataverse

Sync overview
This source can sync data for the Microsoft Dataverse API to work with Microsoft
Dataverse.

This connector currently uses version v9.2 of the API

Output schema

This source will automatically discover the schema of the Entities of your Dataverse
instance using the API
https://<url>/api/data/v9.2/EntityDefinitions?$expand=Attributes

Data type mapping

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://learn.microsoft.com/en-us/power-apps/developer/data-platform/webapi/overview
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/overview
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/overview

Integration
Type

Airbyte Type Notes

String

string

UniqueIdent
ifier

string

DateTime timestamp with
timezone

Integer integer

BigInt integer

Money number

Boolean boolean

Double number

Decimal number

Status integer

State integer

Virtual None We skip virtual
types

Other types are defined as string.

Features

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Feature Supported?(Yes/No) Notes

Full Refresh Sync

Yes

Incremental Sync Yes

CDC Yes Not all entities support it. Deleted
data only have the ID

Replicate Incremental
Deletes

Yes

SSL connection Yes

Namespaces No

Getting started

Requirements

● Application (client) ID
● Directory (tenant) ID
● Client secrets

Setup guide

The Microsoft Dataverse API uses OAuth2 for authentication. We need a
'client_credentials' type, that we usually get by using an App Registration.
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/authenticate-oaut
h

The procedure to generate the credentials and setup the necessary permissions is well
described in this post from Magnetism blog:
https://blog.magnetismsolutions.com/blog/paulnieuwelaar/2021/9/21/setting-up-an-appli
cation-user-in-dynamics-365

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://learn.microsoft.com/en-us/power-apps/developer/data-platform/authenticate-oauth
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/authenticate-oauth
https://blog.magnetismsolutions.com/blog/paulnieuwelaar/2021/9/21/setting-up-an-application-user-in-dynamics-365
https://blog.magnetismsolutions.com/blog/paulnieuwelaar/2021/9/21/setting-up-an-application-user-in-dynamics-365

Mongo DB
The MongoDB source allows to sync data from MongoDb. Source supports Full Refresh
and Incremental sync strategies.

Resulting schema
MongoDB does not have anything like table definition, thus we have to define column
types from actual attributes and their values. The discover phase has two steps:

Step 1. Find all unique properties

Connector select 10k documents to collect all distinct field.

Step 2. Determine property types

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

For each property found, connector determines its type, if all the selected values have
the same type - connector will set appropriate type to the property. In all other cases
connector will fallback to string type.

Features

Feature Supported

Full Refresh Sync

Yes

Incremental - Append
Sync

Yes

Replicate Incremental
Deletes

No

Namespaces No

Full Refresh sync

Works as usual full refresh sync.

Incremental sync

Cursor field can not be nested. Currently, only top-level document properties are
supported.

Cursor should never be blank. In case cursor is blank - the incremental sync results
might be unpredictable and will totally rely on MongoDB comparison algorithm.

Only datetime and number cursor types are supported. Cursor type is determined
based on the cursor field name:

● datetime - if cursor field name contains a string from: time, date, _at,
timestamp, ts

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

● number - otherwise

Getting started
This guide describes in detail how you can configure MongoDB for integration with
Airbyte.

Create users

Run mongo shell, switch to admin database and create a READ_ONLY_USER.
READ_ONLY_USER will be used for Airbyte integration. Please make sure that user has
read-only privileges.

mongo

use admin;

db.createUser({user: "READ_ONLY_USER", pwd:
"READ_ONLY_PASSWORD", roles: [{role: "read", db:
"TARGET_DATABASE"}]})

Make sure the user have appropriate access levels, a user with higher access levels
may throw an exception.

Enable MongoDB authentication

Open /etc/mongod.conf and add/replace specific keys:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

net:

bindIp: 0.0.0.0

security:

authorization: enabled

Binding to 0.0.0.0 will allow to connect to database from any IP address.

The last line will enable MongoDB security. Now only authenticated users will be able to
access the database.

Configure firewall

Make sure that MongoDB is accessible from external servers. Specific commands will
depend on the firewall you are using (UFW/iptables/AWS/etc). Please refer to
appropriate documentation.

Your READ_ONLY_USER should now be ready for use with Airbyte.

TLS/SSL on a Connection

It is recommended to use encrypted connection. Connection with TLS/SSL security
protocol for MongoDb Atlas Cluster and Replica Set instances is enabled by default. To
enable TSL/SSL connection with Standalone MongoDb instance, please refer to
MongoDb Documentation.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.mongodb.com/manual/tutorial/configure-ssl/

Сonfiguration Parameters

● Database: database name
● Authentication Source: specifies the database that the supplied credentials

should be validated against. Defaults to admin.
● User: username to use when connecting
● Password: used to authenticate the user
● Standalone MongoDb instance

○ Host: URL of the database
○ Port: Port to use for connecting to the database
○ TLS: indicates whether to create encrypted connection

● Replica Set
○ Server addresses: the members of a replica set
○ Replica Set: A replica set name

● MongoDb Atlas Cluster
○ Cluster URL: URL of a cluster to connect to

For more information regarding configuration parameters, please see MongoDb
Documentation.

Oracle Netsuite
One unified business management suite, encompassing ERP/Financials, CRM and
ecommerce for more than 31,000 customers.

This connector implements the SuiteTalk REST Web Services and uses REST API to
fetch the customers data.

Prerequisites
● Oracle NetSuite account
● Allowed access to all Account permissions options

Airbyte OSS and Airbyte Cloud

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.mongodb.com/drivers/java/sync/v4.3/fundamentals/connection/
https://docs.mongodb.com/drivers/java/sync/v4.3/fundamentals/connection/
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html
https://system.netsuite.com/pages/customerlogin.jsp?country=US

● Realm (Account ID)
● Consumer Key
● Consumer Secret
● Token ID
● Token Secret

Setup guide

Step 1: Create NetSuite account
1. Create account on Oracle NetSuite
2. Confirm your Email

Step 2: Setup NetSuite account

Step 2.1: Obtain Realm info
1. Login into your NetSuite account
2. Go to Setup » Company » Company Information
3. Copy your Account ID (Realm). It should look like 1234567 for the Production

env. or 1234567_SB2 - for a Sandbox

Step 2.2: Enable features
1. Go to Setup » Company » Enable Features
2. Click on SuiteCloud tab
3. Scroll down to SuiteScript section
4. Enable checkbox for CLIENT SUITESCRIPT and SERVER SUITESCRIPT
5. Scroll down to Manage Authentication section
6. Enable checkbox TOKEN-BASED AUTHENTICATION
7. Scroll down to SuiteTalk (Web Services)
8. Enable checkbox REST WEB SERVISES
9. Save the changes

Step 2.3: Create Integration (obtain Consumer Key and Consumer Secret)
1. Go to Setup » Integration » Manage Integrations » New
2. Fill the Name field (we recommend to put airbyte-rest-integration for a

name)
3. Make sure the State is enabled
4. Enable checkbox Token-Based Authentication in Authentication section
5. Save changes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://system.netsuite.com/pages/customerlogin.jsp?country=US
https://system.netsuite.com/pages/customerlogin.jsp?country=US

6. After that, Consumer Key and Consumer Secret will be showed once (copy them
to the safe place)

Step 2.4: Setup Role
1. Go to Setup » Users/Roles » Manage Roles » New
2. Fill the Name field (we recommend to put airbyte-integration-role for a

name)
3. Scroll down to Permissions tab
4. (REQUIRED) Click on Transactions and manually add all the dropdown

entities with either full or view access level.
5. (REQUIRED) Click on Reports and manually add all the dropdown entities with

either full or view access level.
6. (REQUIRED) Click on Lists and manually add all the dropdown entities with

either full or view access level.
7. (REQUIRED) Click on Setup and manually add all the dropdown entities with

either full or view access level.
● Make sure you've done all REQUIRED steps correctly, to avoid sync issues in the

future.
● Please edit these params again when you rename or customise any Object

in Netsuite for airbyte-integration-role to reflect such changes.

Step 2.5: Setup User
1. Go to Setup » Users/Roles » Manage Users
2. In column Name click on the user’s name you want to give access to the

airbyte-integration-role
3. Then click on Edit button under the user’s name
4. Scroll down to Access tab at the bottom
5. Select from dropdown list the airbyte-integration-role role which you

created in step 2.4
6. Save changes

Step 2.6: Create Access Token for role
1. Go to Setup » Users/Roles » Access Tokens » New
2. Select an Application Name
3. Under User select the user you assigned the airbyte-integration-role in

the step 2.4
4. Inside Role select the one you gave to the user in the step 2.5

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

5. Under Token Name you can give a descriptive name to the Token you are
creating (we recommend to put airbyte-rest-integration-token for a
name)

6. Save changes
7. After that, Token ID and Token Secret will be showed once (copy them to the

safe place)

Step 2.7: Summary

You have copied next parameters

● Realm (Account ID)
● Consumer Key
● Consumer Secret
● Token ID
● Token Secret Also you have properly Configured Account with Correct

Permissions and Access Token for User and Role you've created early.

Step 3: Set up the source connector in Airbyte

For Airbyte Cloud:
1. Log into your Airbyte Cloud account.
2. In the left navigation bar, click Sources. In the top-right corner, click + new

source.
3. On the source setup page, select NetSuite from the Source type dropdown and

enter a name for this connector.
4. Add Realm
5. Add Consumer Key
6. Add Consumer Secret
7. Add Token ID
8. Add Token Secret
9. Click Set up source.

For Airbyte OSS:
1. Go to local Airbyte page.
2. In the left navigation bar, click Sources. In the top-right corner, click + new

source.
3. On the source setup page, select NetSuite from the Source type dropdown and

enter a name for this connector.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.airbyte.com/workspaces

4. Add Realm
5. Add Consumer Key
6. Add Consumer Secret
7. Add Token ID
8. Add Token Secret
9. Click Set up source

Supported sync modes
The NetSuite source connector supports the following sync modes:

● Full Refresh
● Incremental

Supported Streams

● Streams are generated based on ROLE and USER access to them as well as
Account settings, make sure you're using the correct role assigned in our case
airbyte-integration-role or any other custom ROLE granted to the
Access Token, having the access to the NetSuite objects for data sync, please
refer to the Setup guide > Step 2.4 and Setup guide > Step 2.5

Performance considerations
The connector is restricted by Netsuite Concurrency Limit per Integration.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/bridgehead_156224824287.html

TiDB

Overview
TiDB (/’taɪdiːbi:/, "Ti" stands for Titanium) is an open-source, distributed, NewSQL
database that supports Hybrid Transactional and Analytical Processing (HTAP)
workloads. It is MySQL compatible and features horizontal scalability, strong
consistency, and high availability. TiDB can be deployed on-premise or in-cloud.

The TiDB source supports both Full Refresh and Incremental syncs. You can choose if
this connector will copy only the new or updated data, or all rows in the tables and
columns you set up for replication, every time a sync is run.

Resulting schema

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/pingcap/tidb

The TiDB source does not alter the schema present in your database. Depending on the
destination connected to this source, however, the schema may be altered. See the
destination's documentation for more details.

Features

Feature Supported Notes

Full Refresh Sync

Yes

Incremental - Append
Sync

Yes

Replicate Incremental
Deletes

Yes

Change Data Capture No

SSL Support Yes

SSH Tunnel Connection Yes

Getting Started

Requirements
1. TiDB v4.0 or above
2. Allow connections from Airbyte to your TiDB database (if they exist in separate

VPCs)
3. (Optional) Create a dedicated read-only Airbyte user with access to all tables

needed for replication

Note: When connecting to TiDB Cloud with TLS enabled, you need to specify TLS
protocol, such as enabledTLSProtocols=TLSv1.2 or
enabledTLSProtocols=TLSv1.3 in the JDBC parameters.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://en.pingcap.com/tidb-cloud/

Unset

Unset

Setup guide

1. Make sure your database is accessible from the machine running Airbyte

This is dependent on your networking setup. The easiest way to verify if Airbyte is able
to connect to your TiDB instance is via the check connection tool in the UI.

2. Create a dedicated read-only user with access to the relevant tables
(Recommended but optional)

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

To create a dedicated database user, run the following commands against your
database:

CREATE USER 'airbyte'@'%' IDENTIFIED BY
'your_password_here';

Then give it access to the relevant database:

GRANT SELECT ON <database name>.* TO 'airbyte'@'%';

3. That's it!

Your database user should now be ready for use with Airbyte.

Connection via SSH Tunnel

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Airbyte has the ability to connect to a TiDB instance via an SSH Tunnel. The reason you
might want to do this because it is not possible (or against security policy) to connect to
the database directly (e.g. it does not have a public IP address).

When using an SSH tunnel, you are configuring Airbyte to connect to an intermediate
server (a.k.a. a bastion sever) that does have direct access to the database. Airbyte
connects to the bastion and then asks the bastion to connect directly to the server.

Using this feature requires additional configuration, when creating the source. We will
talk through what each piece of configuration means.

1. Configure all fields for the source as you normally would, except SSH Tunnel
Method.

2. SSH Tunnel Method defaults to No Tunnel (meaning a direct connection). If
you want to use an SSH Tunnel choose SSH Key Authentication or
Password Authentication.

i. Choose Key Authentication if you will be using an RSA private key
as your secret for establishing the SSH Tunnel (see below for more
information on generating this key).

ii. Choose Password Authentication if you will be using a password as
your secret for establishing the SSH Tunnel.

3. SSH Tunnel Jump Server Host refers to the intermediate (bastion) server
that Airbyte will connect to. This should be a hostname or an IP Address.

4. SSH Connection Port is the port on the bastion server with which to make
the SSH connection. The default port for SSH connections is 22, so unless you
have explicitly changed something, go with the default.

5. SSH Login Username is the username that Airbyte should use when
connection to the bastion server. This is NOT the TiDB username.

6. If you are using Password Authentication, then SSH Login Username
should be set to the password of the User from the previous step. If you are
using SSH Key Authentication TiDB password, but the password for the
OS-user that Airbyte is using to perform commands on the bastion.

7. If you are using SSH Key Authentication, then SSH Private Key should
be set to the RSA Private Key that you are using to create the SSH connection.
This should be the full contents of the key file starting with -----BEGIN RSA
PRIVATE KEY----- and ending with -----END RSA PRIVATE KEY-----.

Data type mapping

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

TiDB data types are mapped to the following data types when synchronizing data:

TiDB Type Resulting
Type

Notes

bit(1)

boolean

bit(>1) base64
binary
string

boolean boolean

tinyint(1) boolean

tinyint number

smallint number

mediumint number

int number

bigint number

float number

double number

decimal number

binary base64
binary
string

blob base64

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.pingcap.com/tidb/stable/data-type-overview

binary
string

date string ISO 8601 date string. ZERO-DATE value will
be converted to NULL. If column is mandatory,
convert to EPOCH.

datetime,
timestamp

string ISO 8601 datetime string. ZERO-DATE value
will be converted to NULL. If column is
mandatory, convert to EPOCH.

time string ISO 8601 time string. Values are in range
between 00:00:00 and 23:59:59.

year year string Doc

char, varchar with
non-binary charset

string

char, varchar with
binary charset

base64
binary
string

tinyblob base64
binary
string

blob base64
binary
string

mediumblob base64
binary
string

longblob base64
binary
string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.pingcap.com/tidb/stable/data-type-date-and-time#year-type

binary base64
binary
string

varbinary base64
binary
string

tinytext string

text string

mediumtext string

longtext string

json serialized
json string

E.g. {"a": 10, "b": 15}

enum string

set string E.g. blue,green,yellow

Note: arrays for all the above types as well as custom types are supported, although
they may be de-nested depending on the destination.

External resources
Now that you have set up the TiDB source connector, check out the following TiDB
tutorial:

● Using Airbyte to Migrate Data from TiDB Cloud to Snowflake

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://en.pingcap.com/blog/using-airbyte-to-migrate-data-from-tidb-cloud-to-snowflake/

Warehouses and Lakes

Redshift

Overview
The Redshift source supports Full Refresh syncs. That is, every time a sync is run,
Airbyte will copy all rows in the tables and columns you set up for replication into the
destination in a new table.

This Redshift source connector is built on top of the source-jdbc code base and is
configured to rely on JDBC 4.2 standard drivers provided by Amazon via Mulesoft here
as described in Redshift documentation here.

Sync overview

Resulting schema

The Redshift source does not alter the schema present in your warehouse. Depending
on the destination connected to this source, however, the schema may be altered. See
the destination's documentation for more details.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://mvnrepository.com/artifact/com.amazon.redshift/redshift-jdbc42
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-install.html

Features

Feature Supporte
d

Notes

Full Refresh Sync Yes

Incremental Sync Coming
soon

Replicate Incremental
Deletes

Coming
soon

Logical Replication
(WAL)

Coming
soon

SSL Support Yes

SSH Tunnel
Connection

Coming
soon

Namespaces Yes Enabled by default

Schema Selection Yes Multiple schemas may be used at one time. Keep
empty to process all of existing schemas

Incremental Sync

Incremental sync (copying only the data that has changed) for this source is coming
soon.

Getting Started

Requirements
1. Active Redshift cluster
2. Allow connections from Airbyte to your Redshift cluster (if they exist in separate

VPCs)

Setup guide

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

1. Make sure your cluster is active and accessible from the machine running
Airbyte

This is dependent on your networking setup. The easiest way to verify if Airbyte is able
to connect to your Redshift cluster is via the check connection tool in the UI. You can
check AWS Redshift documentation with a tutorial on how to properly configure your
cluster's access here

2. Fill up connection info

Next is to provide the necessary information on how to connect to your cluster such as
the host whcih is part of the connection string or Endpoint accessible here without the
port and database name (it typically includes the cluster-id, region and end with
.redshift.amazonaws.com).

Encryption
All Redshift connections are encrypted using SSL

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-connect-to-cluster.html#rs-gsg-how-to-get-connection-string

Snowflake

Overview
The Snowflake source allows you to sync data from Snowflake. It supports both Full
Refresh and Incremental syncs. You can choose if this connector will copy only the new
or updated data, or all rows in the tables and columns you set up for replication, every
time a sync is run.

This Snowflake source connector is built on top of the source-jdbc code base and is
configured to rely on JDBC 3.13.22 Snowflake driver as described in Snowflake
documentation.

Resulting schema

The Snowflake source does not alter the schema present in your warehouse.
Depending on the destination connected to this source, however, the result schema
may be altered. See the destination's documentation for more details.

Features

Feature Supported?(Yes/No) Notes

Full Refresh Sync Yes

Incremental - Append Yes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/snowflakedb/snowflake-jdbc
https://docs.snowflake.com/en/user-guide/jdbc.html

Unset

Sync

Namespaces Yes

Getting started

Requirements
1. You'll need the following information to configure the Snowflake source:
2. Host
3. Role
4. Warehouse
5. Database
6. Schema
7. Username
8. Password
9. JDBC URL Params (Optional)
10.Create a dedicated read-only Airbyte user and role with access to all schemas

needed for replication.

Setup guide

1. Additional information about Snowflake connection parameters could be found
here.

2. Create a dedicated read-only user with access to the relevant schemas
(Recommended but optional)

This step is optional but highly recommended to allow for better permission control and
auditing. Alternatively, you can use Airbyte with an existing user in your database.

To create a dedicated database user, run the following commands against your
database:

-- set variables (these need to be uppercase)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.snowflake.com/en/user-guide/jdbc-configure.html#connection-parameters

SET AIRBYTE_ROLE = 'AIRBYTE_ROLE';

SET AIRBYTE_USERNAME = 'AIRBYTE_USER';

-- set user password

SET AIRBYTE_PASSWORD = '-password-';

BEGIN;

-- create Airbyte role

CREATE ROLE IF NOT EXISTS $AIRBYTE_ROLE;

-- create Airbyte user

CREATE USER IF NOT EXISTS $AIRBYTE_USERNAME

PASSWORD = $AIRBYTE_PASSWORD

DEFAULT_ROLE = $AIRBYTE_ROLE

DEFAULT_WAREHOUSE= $AIRBYTE_WAREHOUSE;

-- grant Airbyte schema access

GRANT OWNERSHIP ON SCHEMA $AIRBYTE_SCHEMA TO ROLE
$AIRBYTE_ROLE;

COMMIT;

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

You can limit this grant down to specific schemas instead of the whole database. Note
that to replicate data from multiple Snowflake databases, you can re-run the command
above to grant access to all the relevant schemas, but you'll need to set up multiple
sources connecting to the same db on multiple schemas.

Your database user should now be ready for use with Airbyte.

Authentication

There are 2 ways of OAuth supported: Login / Password and OAuth2.

Login and Password

Field Description

Host The host domain of the snowflake instance (must include the
account, region, cloud environment, and end with
snowflakecomputing.com). Example:
accountname.us-east-2.aws.snowflakecomputing.com

Role The role you created in Step 1 for Airbyte to access Snowflake.
Example: AIRBYTE_ROLE

Warehouse The warehouse you created in Step 1 for Airbyte to sync data into.
Example: AIRBYTE_WAREHOUSE

Database The database you created in Step 1 for Airbyte to sync data into.
Example: AIRBYTE_DATABASE

Schema The schema whose tables this replication is targeting. If no
schema is specified, all tables with permission will be presented
regardless of their schema.

Username The username you created in Step 2 to allow Airbyte to access
the database. Example: AIRBYTE_USER

Password The password associated with the username.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.snowflake.com/en/user-guide/admin-account-identifier.html
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#roles
https://docs.snowflake.com/en/user-guide/warehouses-overview.html#overview-of-warehouses
https://docs.snowflake.com/en/sql-reference/ddl-database.html#database-schema-share-ddl
https://docs.snowflake.com/en/sql-reference/ddl-database.html#database-schema-share-ddl

JDBC URL
Params
(Optional)

Additional properties to pass to the JDBC URL string when
connecting to the database formatted as key=value pairs
separated by the symbol &. Example:
key1=value1&key2=value2&key3=value3

OAuth 2.0

Field Description

Host The host domain of the snowflake instance (must include the
account, region, cloud environment, and end with
snowflakecomputing.com). Example:
accountname.us-east-2.aws.snowflakecomputing.com

Role The role you created in Step 1 for Airbyte to access Snowflake.
Example: AIRBYTE_ROLE

Warehouse The warehouse you created in Step 1 for Airbyte to sync data into.
Example: AIRBYTE_WAREHOUSE

Database The database you created in Step 1 for Airbyte to sync data into.
Example: AIRBYTE_DATABASE

Schema The schema whose tables this replication is targeting. If no
schema is specified, all tables with permission will be presented
regardless of their schema.

OAuth2 The Login name and password to obtain auth token.

JDBC URL
Params
(Optional)

Additional properties to pass to the JDBC URL string when
connecting to the database formatted as key=value pairs
separated by the symbol &. Example:
key1=value1&key2=value2&key3=value3

Network policies

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/admin-account-identifier.html
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#roles
https://docs.snowflake.com/en/user-guide/warehouses-overview.html#overview-of-warehouses
https://docs.snowflake.com/en/sql-reference/ddl-database.html#database-schema-share-ddl
https://docs.snowflake.com/en/sql-reference/ddl-database.html#database-schema-share-ddl
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html

Unset

Unset

By default, Snowflake allows users to connect to the service from any computer or
device IP address. A security administrator (i.e. users with the SECURITYADMIN role)
or higher can create a network policy to allow or deny access to a single IP address or a
list of addresses.

If you have any issues connecting with Airbyte Cloud please make sure that the list of IP
addresses is on the allowed list

To determine whether a network policy is set on your account or for a specific user,
execute the SHOW PARAMETERS command.

Account

SHOW PARAMETERS LIKE 'network_policy' IN ACCOUNT;

User

SHOW PARAMETERS LIKE 'network_policy' IN USER
<username>;

To read more please check official Snowflake documentation

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.snowflake.com/en/user-guide/network-policies.html#

Azure Table Storage

Overview
The Azure table storage supports Full Refresh and Incremental syncs. You can choose
which tables you want to replicate.

Output schema

This Source have generic schema for all streams. Azure Table storage is a service that
stores non-relational structured data (also known as structured NoSQL data). There is
no efficient way to read schema for the given table. We use data property to have all
the properties for any given row.

● data - This property contain all values
● additionalProperties - This property denotes that all the values are in data

property.

{ "$schema": "http://json-schema.org/draft-07/schema#", "type":
"object", "properties": { "data": { "type": "object" },
"additionalProperties": { "type": "boolean" } } }

Data type mapping

Azure Table Storage uses different property types and Airbyte uses internally (string,
date-time, object, array, boolean, integer, and number). We don't apply any
explicit data type mappings.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-the-table-service-data-model#property-types

Features

Feature Supporte
d?

Full Refresh Sync Yes

Incremental - Append
Sync

Yes

Incremental - Dedupe
Sync

No

SSL connection Yes

Namespaces No

Performance considerations

The Azure table storage connector should not run into API limitations under normal
usage. Please create an issue if you see any rate limit issues that are not automatically
retried successfully.

Getting Started

Requirements

● Azure Storage Account
● Azure Storage Account Key
● Azure Storage Endpoint Suffix

Setup guide

Visit the Azure Portal. Go to your storage account, you can find :

● Azure Storage Account - under the overview tab
● Azure Storage Account Key - under the Access keys tab
● Azure Storage Endpoint Suffix - under the Enpoint tab

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues
https://portal.azure.com/

We recommend creating a restricted key specifically for Airbyte access. This will allow
you to control which resources Airbyte should be able to access. However, shared
access key authentication is not supported by this connector yet.

BigQuery

Overview
The BigQuery source supports both Full Refresh and Incremental syncs. You can
choose if this connector will copy only the new or updated data, or all rows in the tables
and columns you set up for replication, every time a sync is running.

Resulting schema

The BigQuery source does not alter the schema present in your database. Depending
on the destination connected to this source, however, the schema may be altered. See
the destination's documentation for more details.

Data type mapping

The BigQuery data types mapping:

BigQuery
Type

Resulting
Type

Notes

BOOL Boolean

INT64 Number

FLOAT64 Number

NUMERIC Number

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

BIGNUMERIC Number

STRING String

BYTES String

DATE String In ISO8601
format

DATETIME String In ISO8601
format

TIMESTAMP String In ISO8601
format

TIME String

ARRAY Array

STRUCT Object

GEOGRAPHY String

Features

Feature Support
ed

Note
s

Full Refresh Sync Yes

Incremental Sync Yes

Change Data
Capture

No

SSL Support Yes

Getting started

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Requirements

To use the BigQuery source, you'll need:

● A Google Cloud Project with BigQuery enabled
● A Google Cloud Service Account with the "BigQuery User" and "BigQuery Data

Editor" roles in your GCP project
● A Service Account Key to authenticate into your Service Account

See the setup guide for more information about how to create the required resources.

Service account

In order for Airbyte to sync data from BigQuery, it needs credentials for a Service
Account with the "BigQuery User" and "BigQuery Data Editor" roles, which grants
permissions to run BigQuery jobs, write to BigQuery Datasets, and read table metadata.
We highly recommend that this Service Account is exclusive to Airbyte for ease of
permissioning and auditing. However, you can use a pre-existing Service Account if you
already have one with the correct permissions.

The easiest way to create a Service Account is to follow GCP's guide for Creating a
Service Account. Once you've created the Service Account, make sure to keep its ID
handy as you will need to reference it when granting roles. Service Account IDs typically
take the form <account-name>@<project-name>.iam.gserviceaccount.com

Then, add the service account as a Member in your Google Cloud Project with the
"BigQuery User" role. To do this, follow the instructions for Granting Access in the
Google documentation. The email address of the member you are adding is the same
as the Service Account ID you just created.

At this point you should have a service account with the "BigQuery User" project-level
permission.

Service account key

Service Account Keys are used to authenticate as Google Service Accounts. For
Airbyte to leverage the permissions you granted to the Service Account in the previous
step, you'll need to provide its Service Account Keys. See the Google documentation for
more information about Keys.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/granting-changing-revoking-access#granting-console
https://cloud.google.com/iam/docs/service-accounts#service_account_keys

Follow the Creating and Managing Service Account Keys guide to create a key. Airbyte
currently supports JSON Keys only, so make sure you create your key in that format. As
soon as you created the key, make sure to download it, as that is the only time Google
will allow you to see its contents. Once you've successfully configured BigQuery as a
source in Airbyte, delete this key from your computer.

Setup the BigQuery source in Airbyte

You should now have all the requirements needed to configure BigQuery as a source in
the UI. You'll need the following information to configure the BigQuery source:

● Project ID
● Default Dataset ID [Optional]: the schema name if only one schema is interested.

Dramatically boost source discover operation.
● Credentials JSON: the contents of your Service Account Key JSON file

Once you've configured BigQuery as a source, delete the Service Account Key from
your computer.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/creating-managing-service-account-keys

Firebolt

Overview
The Firebolt source allows you to sync your data from Firebolt. Only Full refresh is
supported at the moment.

The connector is built on top of a pure Python firebolt-sdk and does not require
additional dependencies.

Resulting schema

The Firebolt source does not alter schema present in your database. Depending on the
destination connected to this source, however, the result schema may be altered. See
the destination's documentation for more details.

Features

Feature Supported?(Yes/
No)

Note
s

Full Refresh Sync Yes

Incremental - Append
Sync

No

Getting started

Requirements
1. An existing AWS account

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.firebolt.io/
https://pypi.org/project/firebolt-sdk/

Setup guide
1. Create a Firebolt account following the guide
2. Follow the getting started tutorial to setup a database
3. Load data
4. Create an Analytics (read-only) engine as described in here

You should now have the following
1. An existing Firebolt account
2. Connection parameters handy

i. Username
ii. Password
iii. Account, in case of a multi-account setup (Optional)
iv. Host (Optional)
v. Engine (Optional), preferably Analytics/read-only

3. A running engine (if an engine is stopped or booting up you won't be able to
connect to it)

4. Your data is in either Fact or Dimension tables.

You can now use the Airbyte Firebolt source.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.firebolt.io/managing-your-account/creating-an-account.html
https://docs.firebolt.io/getting-started.html
https://docs.firebolt.io/loading-data/loading-data.html
https://docs.firebolt.io/working-with-engines/working-with-engines-using-the-firebolt-manager.html
https://docs.firebolt.io/working-with-tables.html#fact-and-dimension-tables

S3
This page contains the setup guide and reference information for the Amazon S3
source connector.

Prerequisites
Define file pattern, see the Path Patterns section

Setup guide

Step 1: Set up Amazon S3

● If syncing from a private bucket, the credentials you use for the connection must
have have both read and list access on the S3 bucket. list is required to
discover files based on the provided pattern(s).

Step 2: Set up the Amazon S3 connector in Airbyte

For Airbyte Cloud:
1. Log into your Airbyte Cloud account.
2. In the left navigation bar, click <Sources/Destinations>. In the top-right corner,

click +new source/destination.
3. On the Set up the source/destination page, enter the name for the connector

name connector and select connector name from the Source/Destination
type dropdown.

4. Set dataset appropriately. This will be the name of the table in the destination.
5. If your bucket contains only files containing data for this table, use ** as

path_pattern. See the Path Patterns section for more specific pattern matching.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.airbyte.com/workspaces

6. Leave schema as {} to automatically infer it from the file(s). For details on
providing a schema, see the User Schema section.

7. Fill in the fields within the provider box appropriately. If your bucket is not public,
add credentials with sufficient permissions under aws_access_key_id and
aws_secret_access_key.

8. Choose the format corresponding to the format of your files and fill in the fields as
required. If unsure about values, try out the defaults and come back if needed.
Find details on these settings here.

For Airbyte Open Source:
1. Create a new S3 source with a suitable name. Since each S3 source maps to

just a single table, it may be worth including that in the name.
2. Set dataset appropriately. This will be the name of the table in the destination.
3. If your bucket contains only files containing data for this table, use ** as

path_pattern. See the Path Patterns section for more specific pattern matching.
4. Leave schema as {} to automatically infer it from the file(s). For details on

providing a schema, see the User Schema section.
5. Fill in the fields within the provider box appropriately. If your bucket is not public,

add credentials with sufficient permissions under aws_access_key_id and
aws_secret_access_key.

6. Choose the format corresponding to the format of your files and fill in fields as
required. If unsure about values, try out the defaults and come back if needed.
Find details on these settings here.

Supported sync modes
The Amazon S3 source connector supports the following sync modes:

Feature Supporte
d?

Full Refresh Sync Yes

Incremental Sync Yes

Replicate Incremental Deletes No

Replicate Multiple Files (pattern Yes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.airbyte.com/integrations/sources/s3#file-format-settings
https://docs.airbyte.com/integrations/sources/s3#path-patterns
https://docs.airbyte.com/integrations/sources/s3#user-schema
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

matching)

Replicate Multiple Streams (distinct
tables)

No

Namespaces No

File Compressions
Compression Supported?

Gzip Yes

Zip No

Bzip2 Yes

Lzma No

Xz No

Snappy No

Please let us know any specific compressions you'd like to see support for next!

Path Patterns
(tl;dr -> path pattern syntax using wcmatch.glob. GLOBSTAR and SPLIT flags are
enabled.)

This connector can sync multiple files by using glob-style patterns, rather than requiring
a specific path for every file. This enables:

● Referencing many files with just one pattern, e.g. ** would indicate every file in
the bucket.

● Referencing future files that don't exist yet (and therefore don't have a specific
path).

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://facelessuser.github.io/wcmatch/glob/

Unset

You must provide a path pattern. You can also provide many patterns split with | for
more complex directory layouts.

Each path pattern is a reference from the root of the bucket, so don't include the bucket
name in the pattern(s).

Some example patterns:

● ** : match everything.
● **/*.csv : match all files with specific extension.
● myFolder/**/*.csv : match all csv files anywhere under myFolder.
● */** : match everything at least one folder deep.
● */*/*/** : match everything at least three folders deep.
● **/file.*|**/file : match every file called "file" with any extension (or no

extension).
● x/*/y/* : match all files that sit in folder x -> any folder -> folder y.
● **/prefix*.csv : match all csv files with specific prefix.
● **/prefix*.parquet : match all parquet files with specific prefix.

Let's look at a specific example, matching the following bucket layout:

myBucket

-> log_files

-> some_table_files

-> part1.csv

-> part2.csv

-> images

-> more_table_files

-> part3.csv

-> extras

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

-> misc

-> another_part1.csv

We want to pick up part1.csv, part2.csv and part3.csv (excluding another_part1.csv for
now). We could do this a few different ways:

● We could pick up every csv file called "partX" with the single pattern
**/part*.csv.

● To be a bit more robust, we could use the dual pattern
some_table_files/*.csv|more_table_files/*.csv to pick up relevant
files only from those exact folders.

● We could achieve the above in a single pattern by using the pattern
table_files/.csv. This could however cause problems in the future if new
unexpected folders started being created.

● We can also recursively wildcard, so adding the pattern extras/**/*.csv
would pick up any csv files nested in folders below "extras", such as
"extras/misc/another_part1.csv".

As you can probably tell, there are many ways to achieve the same goal with path
patterns. We recommend using a pattern that ensures clarity and is robust against
future additions to the directory structure.

User Schema
Providing a schema allows for more control over the output of this stream. Without a
provided schema, columns and datatypes will be inferred from the first created file in the
bucket matching your path pattern and suffix. This will probably be fine in most cases
but there may be situations you want to enforce a schema instead, e.g.:

● You only care about a specific known subset of the columns. The other columns
would all still be included, but packed into the _ab_additional_properties
map.

● Your initial dataset is quite small (in terms of number of records), and you think
the automatic type inference from this sample might not be representative of the
data in the future.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● You want to purposely define types for every column.
● You know the names of columns that will be added to future data and want to

include these in the core schema as columns rather than have them appear in
the _ab_additional_properties map.

Or any other reason! The schema must be provided as valid JSON as a map of
{"column": "datatype"} where each datatype is one of:

● string
● number
● integer
● object
● array
● boolean
● null

For example:

● {"id": "integer", "location": "string", "longitude": "number", "latitude": "number"}
● {"username": "string", "friends": "array", "information": "object"}

NOTE

Please note, the S3 Source connector used to infer schemas from all the available files
and then merge them to create a superset schema. Starting from version 2.0.0 the
schema inference works based on the first file found only. The first file we consider is
the oldest one written to the prefix.

S3 Provider Settings

● bucket : name of the bucket your files are in
● aws_access_key_id : one half of the required credentials for accessing a

private bucket.
● aws_secret_access_key : other half of the required credentials for accessing

a private bucket.
● path_prefix : an optional string that limits the files returned by AWS when

listing files to only that those starting with this prefix. This is different to
path_pattern as it gets pushed down to the API call made to S3 rather than
filtered in Airbyte and it does not accept pattern-style symbols (like wildcards *).
We recommend using this if your bucket has many folders and files that are

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

unrelated to this stream and all the relevant files will always sit under this chosen
prefix.

○ Together with path_pattern, there are multiple ways to specify the files
to sync. For example, all the following configs are equivalent:

■ path_prefix = <empty>, path_pattern =
path1/path2/myFolder/**/*.

■ path_prefix = path1/, path_pattern =
path2/myFolder/**/*.csv.

■ path_prefix = path1/path2/ and path_pattern =
myFolder/**/*.csv

■ path_prefix = path1/path2/myFolder/, path_pattern =
**/*.csv. This is the most efficient one because the directories
are filtered earlier in the S3 API call. However, the difference in
efficiency is usually negligible.

○ The rationale of having both path_prefix and path_pattern is to
accommodate as many use cases as possible. If you found them
confusing, feel free to ignore path_prefix and just set the
path_pattern.

● endpoint : optional parameter that allow using of non Amazon S3 compatible
services. Leave it blank for using default Amazon serivce.

● use_ssl : Allows using custom servers that configured to use plain http. Ignored
in case of using Amazon service.

● verify_ssl_cert : Skip ssl validity check in case of using custom servers with
self signed certificates. Ignored in case of using Amazon service.
File Format Settings
The Reader in charge of loading the file format is currently based on PyArrow
(Apache Arrow).
Note that all files within one stream must adhere to the same read options for
every provided format.

CSV

Since CSV files are effectively plain text, providing specific reader options is often
required for correct parsing of the files. These settings are applied when a CSV is
created or exported so please ensure that this process happens consistently over time.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://arrow.apache.org/docs/python/generated/pyarrow.csv.open_csv.html

Unset

● delimiter : Even though CSV is an acronymn for Comma Separated Values, it
is used more generally as a term for flat file data that may or may not be comma
separated. The delimiter field lets you specify which character acts as the
separator.

● quote_char : In some cases, data values may contain instances of reserved
characters (like a comma, if that's the delimiter). CSVs can allow this behaviour
by wrapping a value in defined quote characters so that on read it can parse it
correctly.

● escape_char : An escape character can be used to prefix a reserved character
and allow correct parsing.

● encoding : Some data may use a different character set (typically when
different alphabets are involved). See the list of allowable encodings here.

● double_quote : Whether two quotes in a quoted CSV value denote a single
quote in the data.

● newlines_in_values : Sometimes referred to as multiline. In most cases,
newline characters signal the end of a row in a CSV, however text data may
contain newline characters within it. Setting this to True allows correct parsing in
this case.

● block_size : This is the number of bytes to process in memory at a time while
reading files. The default value here is usually fine but if your table is particularly
wide (lots of columns / data in fields is large) then raising this might solve failures
on detecting schema. Since this defines how much data to read into memory,
raising this too high could cause Out Of Memory issues so use with caution.

● additional_reader_options : This allows for editing the less commonly
required CSV ConvertOptions. The value must be a valid JSON string, e.g.:

●
● {"timestamp_parsers": ["%m/%d/%Y %H:%M", "%Y/%m/%d

%H:%M"], "strings_can_be_null": true, "null_values":
["NA", "NULL"]}

●
advanced_options : This allows for editing the less commonly required CSV
ReadOptions. The value must be a valid JSON string. One use case for this is
when your CSV has no header, or you want to use custom column names, you
can specify column_names using this option.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.python.org/3/library/codecs.html#standard-encodings
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ConvertOptions.html#pyarrow.csv.ConvertOptions
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ReadOptions.html#pyarrow.csv.ReadOptions

Unset

●
● {"column_names": ["column1", "column2", "column3"]}

Parquet

Apache Parquet file is a column-oriented data storage format of the Apache Hadoop
ecosystem. It provides efficient data compression and encoding schemes with
enhanced performance to handle complex data in bulk. For now, the solution involves
iterating through individual files at the abstract level thus partitioned parquet datasets
are unsupported. The following settings are available:

● buffer_size : If positive, perform read buffering when deserializing individual
column chunks. Otherwise IO calls are unbuffered.

● columns : If not None, only these columns will be read from the file.
● batch_size : Maximum number of records per batch. Batches may be smaller

if there aren’t enough rows in the file.

You can find details on here.

Avro

The avro parser uses fastavro. Currently, no additional options are supported.

Jsonl

The Jsonl parser uses pyarrow hence,only the line-delimited JSON format is
supported.For more detailed info, please refer to the [docs]
(https://arrow.apache.org/docs/python/generated/pyarrow.json.read_json.html)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetFile.html#pyarrow.parquet.ParquetFile.iter_batches
https://fastavro.readthedocs.io/en/latest/
https://arrow.apache.org/docs/python/generated/pyarrow.json.read_json.html

Files

Google Sheets
This page guides you through the process of setting up the Google Sheets source
connector.
INFO

The Google Sheets source connector pulls data from a single Google Sheets
spreadsheet. To replicate multiple spreadsheets, set up multiple Google Sheets source
connectors in your Airbyte instance.

Setup guide
For Airbyte Cloud:

To set up Google Sheets as a source in Airbyte Cloud:
1. Log into your Airbyte Cloud account.
2. In the left navigation bar, click Sources. In the top-right corner, click + New

source.
3. On the Set up the source page, select Google Sheets from the Source type

dropdown.
4. Enter a name for the Google Sheets connector.
5. Authenticate your Google account via OAuth or Service Account Key

Authentication.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.airbyte.com/workspaces

○ (Recommended) To authenticate your Google account via OAuth, click
Sign in with Google and complete the authentication workflow.

○ To authenticate your Google account via Service Account Key
Authentication, enter your Google Cloud service account key in JSON
format. Make sure the Service Account has the Project Viewer permission.
If your spreadsheet is viewable by anyone with its link, no further action is
needed. If not, give your Service account access to your spreadsheet.

6. For Spreadsheet Link, enter the link to the Google spreadsheet. To get the link,
go to the Google spreadsheet you want to sync, click Share in the top right
corner, and click Copy Link.

7. For Row Batch Size, define the number of records you want the Google API to
fetch at a time. The default value is 200.

For Airbyte Open Source:

To set up Google Sheets as a source in Airbyte Open Source:
1. Enable the Google Cloud Platform APIs for your personal or organization

account.
INFO
The connector only finds the spreadsheet you want to replicate; it does not
access any of your other files in Google Drive.

2. Go to the Airbyte UI and in the left navigation bar, click Sources. In the top-right
corner, click + New source.

3. On the Set up the source page, select Google Sheets from the Source type
dropdown.

4. Enter a name for the Google Sheets connector.
5. Authenticate your Google account via OAuth or Service Account Key

Authentication:
○ To authenticate your Google account via OAuth, enter your Google

application's client ID, client secret, and refresh token.
○ To authenticate your Google account via Service Account Key

Authentication, enter your Google Cloud service account key in JSON
format. Make sure the Service Account has the Project Viewer permission.
If your spreadsheet is viewable by anyone with its link, no further action is
needed. If not, give your Service account access to your spreadsheet.

6. For Spreadsheet Link, enter the link to the Google spreadsheet. To get the link,
go to the Google spreadsheet you want to sync, click Share in the top right
corner, and click Copy Link.

Output schema

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/creating-managing-service-account-keys#creating_service_account_keys
https://youtu.be/GyomEw5a2NQ%22
https://support.google.com/googleapi/answer/6158841?hl=en
https://support.google.com/googleapi/answer/6158841?hl=en
https://developers.google.com/identity/protocols/oauth2
https://cloud.google.com/iam/docs/creating-managing-service-account-keys#creating_service_account_keys
https://youtu.be/GyomEw5a2NQ%22

Each sheet in the selected spreadsheet is synced as a separate stream. Each selected
column in the sheet is synced as a string field.

Note: Sheet names and column headers must contain only alphanumeric characters or
_, as specified in the Airbyte Protocol. For example, if your sheet or column header is
named the data, rename it to the_data. This restriction does not apply to
non-header cell values.

Airbyte only supports replicating Grid sheets.

Supported sync modes
The Google Sheets source connector supports the following sync modes:

● Full Refresh - Overwrite
● Full Refresh - Append

Data type mapping
Integration

Type
Airbyte

Type
Note

s

any type string

Performance consideration
The Google API rate limit is 100 requests per 100 seconds per user and 500 requests
per 100 seconds per project. Airbyte batches requests to the API in order to efficiently
pull data and respects these rate limits. We recommended not using the same service
user for more than 3 instances of the Google Sheets source connector to ensure high
transfer speeds.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/sheets#SheetType
https://developers.google.com/sheets/api/limits

Files (CSV, JSON, Excel, Feather, Parquet)
This page contains the setup guide and reference information for the Files source
connector.

Prerequisites
● URL to access the file
● Format
● Reader options
● Storage Providers

Setup guide
For Airbyte Cloud:

Setup through Airbyte Cloud will be exactly the same as the open-source setup, except
for the fact that local files are disabled.

For Airbyte Open Source:
1. Once the File Source is selected, you should define both the storage provider

along its URL and format of the file.
2. Depending on the provider choice and privacy of the data, you will have to

configure more options.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Fields description

● For Dataset Name use the name of the final table to replicate this file into
(should include letters, numbers dash and underscores only).

● For File Format use the format of the file which should be replicated
(Warning: some formats may be experimental, please refer to the docs).

● For Reader Options use a string in JSON format. It depends on the chosen
file format to provide additional options and tune its behavior. For example, {} for
empty options, {"sep": " "} for set up separator to one space ' '.

● For URL use the URL path to access the file which should be replicated.
● For Storage Provider use the storage Provider or Location of the file(s)

which should be replicated.
○ [Default] Public Web

■ User-Agent set to active if you want to add User-Agent to
requests

○ GCS: Google Cloud Storage
■ Service Account JSON In order to access private Buckets

stored on Google Cloud, this connector would need a service
account json credentials with the proper permissions as described
here. Please generate the credentials.json file and copy/paste its
content to this field (expecting JSON formats). If accessing publicly
available data, this field is not necessary.

○ S3: Amazon Web Services
■ AWS Access Key ID In order to access private Buckets stored on

AWS S3, this connector would need credentials with the proper
permissions. If accessing publicly available data, this field is not
necessary.

■ AWS Secret Access KeyIn order to access private Buckets
stored on AWS S3, this connector would need credentials with the
proper permissions. If accessing publicly available data, this field is
not necessary.

○ AzBlob: Azure Blob Storage
■ Storage Account The globally unique name of the storage

account that the desired blob sits within. See here for more details.
■ SAS Token To access Azure Blob Storage, this connector would

need credentials with the proper permissions. One option is a SAS
(Shared Access Signature) token. If accessing publicly available
data, this field is not necessary.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/iam/docs/service-accounts
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview

■ Shared Key To access Azure Blob Storage, this connector would
need credentials with the proper permissions. One option is a
storage account shared key (aka account key or access key). If
accessing publicly available data, this field is not necessary.

○ SSH: Secure Shell
■ User use username.
■ Password use password.
■ Host use a host.
■ Port use a port for your host.

○ SCP: Secure copy protocol
■ User use username.
■ Password use password.
■ Host use a host.
■ Port use a port for your host.

○ SFTP: Secure File Transfer Protocol
■ User use username.
■ Password use password.
■ Host use a host.
■ Port use a port for your host.

○ Local Filesystem (limited)
■ Storage WARNING: Note that the local storage URL available for

reading must start with the local mount "/local/" at the moment until
we implement more advanced docker mounting options.

Provider Specific Information

● In case of Google Drive, it is necesary to use the Download URL, the format for
that is
https://drive.google.com/uc?export=download&id=[DRIVE_FILE_
ID] where [DRIVE_FILE_ID] is the string found in the Share URL here
https://drive.google.com/file/d/[DRIVE_FILE_ID]/view?usp=sh
aring

● In case of GCS, it is necessary to provide the content of the service account
keyfile to access private buckets. See settings of BigQuery Destination

● In case of AWS S3, the pair of aws_access_key_id and
aws_secret_access_key is necessary to access private S3 buckets.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

● In case of AzBlob, it is necessary to provide the storage_account in which the
blob you want to access resides. Either sas_token (info) or shared_key (info)
is necessary to access private blobs.

● In case of a locally stored file on a Windows OS, it's necessary to change the
values for LOCAL_ROOT, LOCAL_DOCKER_MOUNT and
HACK_LOCAL_ROOT_PARENT in the .env file to an existing absolute path on
your machine (colons in the path need to be replaced with a double forward
slash, //). LOCAL_ROOT & LOCAL_DOCKER_MOUNT should be the same value,
and HACK_LOCAL_ROOT_PARENT should be the parent directory of the other
two.

Reader Options

The Reader in charge of loading the file format is currently based on Pandas IO Tools. It
is possible to customize how to load the file into a Pandas DataFrame as part of this
Source Connector. This is doable in the reader_options that should be in JSON
format and depends on the chosen file format. See pandas' documentation, depending
on the format:

For example, if the format CSV is selected, then options from the read_csv functions are
available.

● It is therefore possible to customize the delimiter (or sep) to in case of tab
separated files.

● Header line can be ignored with header=0 and customized with names
● etc

We would therefore provide in the reader_options the following json:

{ "sep" : "\t", "header" : 0, "names": ["column1",
"column2"]}

In case you select JSON format, then options from the read_json reader are available.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.microsoft.com/en-us/azure/storage/blobs/sas-service-create?tabs=dotnet
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage?tabs=azure-portal
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-json-reader

Unset

Unset

For example, you can use the {"orient" : "records"} to change how orientation
of data is loaded (if data is [{column -> value}, … , {column -> value}])

If you need to read Excel Binary Workbook, please specify excel_binary format in
File Format select.

:::warning

This connector does not support syncing unstructured data
files such as raw text, audio, or videos.

:::

Supported sync modes
Feature Supporte

d?

Full Refresh Sync Yes

Incremental Sync No

Replicate Incremental Deletes No

Replicate Folders (multiple Files) No

Replicate Glob Patterns (multiple
Files)

No

:::info

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

This source produces a single table for the target file as
it replicates only one file at a time for the moment. Note
that you should provide the `dataset_name` which dictates
how the table will be identified in the destination (since
`URL` can be made of complex characters).

:::

File / Stream Compression
Compressi

on
Supporte

d?

Gzip Yes

Zip No

Bzip2 No

Lzma No

Xz No

Snappy No

Storage Providers
Storage Providers Supported?

HTTPS Yes

Google Cloud Storage Yes

Amazon Web Services Yes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

S3

SFTP Yes

SSH / SCP Yes

local filesystem Local use only (inaccessible for Airbyte
Cloud)

File Formats

Format Supporte
d?

CSV Yes

JSON Yes

HTML No

XML No

Excel Yes

Excel Binary
Workbook

Yes

Feather Yes

Parquet Yes

Pickle No

YAML Yes

Changing data types of source columns

Normally, Airbyte tries to infer the data type from the source, but you can use
reader_options to force specific data types. If you input {"dtype":"string"}, all

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

columns will be forced to be parsed as strings. If you only want a specific column to be
parsed as a string, simply use {"dtype" : {"column name": "string"}}.

Examples

Here are a list of examples of possible file inputs:

Dataset
Name

Stor
age

URL Reader
Impl

Service
Account

Descrip
tion

epidemiolog
y

HTT
PS

https://storage.googleapis.c
om/covid19-open-data/v2/lat
est/epidemiology.csv

COVID-
19
Public
dataset
on
BigQuer
y

hr_and_fina
ncials

GCS gs://airbyte-vault/financial.cs
v

smart_
open or
gcfs

{"type":
"service_acc
ount",
"private_key
_id":
"XXXXXXXX
", ...}

data
from a
private
bucket,
a
service
account
is
necessa
ry

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://storage.googleapis.com/covid19-open-data/v2/latest/epidemiology.csv
https://storage.googleapis.com/covid19-open-data/v2/latest/epidemiology.csv
https://storage.googleapis.com/covid19-open-data/v2/latest/epidemiology.csv
https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-public-data-program?filter=solution-type:dataset&id=7d6cc408-53c8-4485-a187-b8cb9a5c0b56
https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-public-data-program?filter=solution-type:dataset&id=7d6cc408-53c8-4485-a187-b8cb9a5c0b56
https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-public-data-program?filter=solution-type:dataset&id=7d6cc408-53c8-4485-a187-b8cb9a5c0b56
https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-public-data-program?filter=solution-type:dataset&id=7d6cc408-53c8-4485-a187-b8cb9a5c0b56

landsat_ind
ex

GCS gcp-public-data-landsat/inde
x.csv.gz

smart_
open

Using
smart_o
pen, we
don't
need to
specify
the
compres
sion
(note
the gs://
is
optional
too,
same
for other
provider
s)

Examples with reader options:

Dataset
Name

Stor
age

URL Rea
der
Imp

l

Reader
Options

Description

landsat_i
ndex

GC
S

gs://gcp-public-data-la
ndsat/index.csv.gz

GC
FS

{"compres
sion":
"gzip"}

Additional reader
options to specify a
compression option to
read_csv

GDELT S3 s3://gdelt-open-data/e
vents/20190914.expor
t.csv

{"sep": "\t",
"header":
null}

Here is TSV data
separated by tabs
without header row
from AWS Open Data

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://registry.opendata.aws/gdelt/

server_lo
gs

local /local/logs.log {"sep": ";"} After making sure a
local text file exists at
/tmp/airbyte_loca
l/logs.log with logs
file from some server
that are delimited by ';'
delimiters

Example for SFTP:

Data
set

Nam
e

Stor
age

Us
er

Pass
word

Host URL Reader
Options

Description

Test
Reb
ext

SFT
P

de
mo

pass
word

test.rebe
xt.net

/pub/example/rea
dme.txt

{"sep":
"\r\n",
"header":
null,
"names":
["text"],
"engine":
"python"}

We use
python
engine for
read_csv
in order to
handle
delimiter of
more than 1
character
while
providing
our own
column
names.

Please see (or add) more at
airbyte-integrations/connectors/source-file/integration_tests/in
tegration_source_test.py for further usages examples.

Performance Considerations and Notes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

In order to read large files from a remote location, this connector uses the smart_open
library. However, it is possible to switch to either GCSFS or S3FS implementations as it
is natively supported by the pandas library. This choice is made possible through the
optional reader_impl parameter.

● Note that for local filesystem, the file probably have to be stored somewhere in
the /tmp/airbyte_local folder with the same limitations as the CSV
Destination so the URL should also starts with /local/.

● Please make sure that Docker Desktop has access to /tmp (and /private on a
MacOS, as /tmp has a symlink that points to /private. It will not work otherwise).
You allow it with "File sharing" in Settings -> Resources -> File
sharing -> add the one or two above folder and hit the "Apply &
restart" button.

● The JSON implementation needs to be tweaked in order to produce more
complex catalog and is still in an experimental state: Simple JSON schemas
should work at this point but may not be well handled when there are multiple
layers of nesting.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://pypi.org/project/smart-open/
https://gcsfs.readthedocs.io/en/latest/
https://s3fs.readthedocs.io/en/latest/

SFTP
This page contains the setup guide and reference information for the SFTP source
connector.

Prerequisites
● The Server with SFTP connection type support
● The Server host
● The Server port
● Username-Password/Public Key Access Rights

Setup guide

Step 1: Set up SFTP
1. Use your username/password credential to connect the server.
2. Alternatively generate Public Key Access

The following simple steps are required to set up public key authentication:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Key pair is created (typically by the user). This is typically done with ssh-keygen. Private
key stays with the user (and only there), while the public key is sent to the server.
Typically with the ssh-copy-id utility. Server stores the public key (and "marks" it as
authorized). Server will now allow access to anyone who can prove they have the
corresponding private key.

Step 2: Set up the SFTP connector in Airbyte

For Airbyte Cloud:
1. Log into your Airbyte Cloud account.
2. In the left navigation bar, click Sources. In the top-right corner, click +new

source.
3. On the Set up the source page, enter the name for the SFTP connector and

select SFTP from the Source type dropdown.
4. Enter your User Name, Host Address, Port
5. Choose the Authentication type Password Authentication or Key

Authentication
6. Type File type (temporary comma separated)
7. Enter Folder Path (Optional) to specify server folder for sync
8. Enter File Pattern (Optional). e.g.

log-([0-9]{4})([0-9]{2})([0-9]{2}). Write your own regex
9. Click on Check Connection to finish configuring the Amplitude source.

Supported sync modes
The SFTP source connector supports the following sync modes:

Feature Support Notes

Full Refresh -
Overwrite

✅ Warning: this mode deletes all previously
synced data in the configured bucket path.

Full Refresh - Append
Sync

❌

Incremental - Append ❌

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.airbyte.com/workspaces
https://www.tutorialspoint.com/java/java_regular_expressions.htm

Incremental -
Deduped History

❌

Namespaces ❌

Supported Streams
This source provides a single stream per file with a dynamic schema. The current
supported type file: .csv and .json More formats (e.g. Apache Avro) will be supported
in the future.

Smartsheets
This page guides you through the process of setting up the Smartsheets source
connector.

Prerequisites
To configure the Smartsheet Source for syncs, you'll need the following:

● A Smartsheets API access token - generated by a Smartsheets user with at least
read access

● The ID of the spreadsheet you'd like to sync

Step 1: Set up Smartsheets

Obtain a Smartsheets API access token

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

You can generate an API key for your account from a session of your Smartsheet
webapp by clicking:

● Account (top-right icon)
● Apps & Integrations
● API Access
● Generate new access token

For questions on advanced authorization flows, refer to this.

Prepare the spreadsheet ID of your Smartsheet

You'll also need the ID of the Spreadsheet you'd like to sync. Unlike Google Sheets, this
ID is not found in the URL. You can find the required spreadsheet ID from your
Smartsheet app session by going to:

● File
● Properties

Step 2: Set up the Smartsheets connector in Airbyte
For Airbyte Cloud:

1. Log into your Airbyte Cloud account.
2. In the left navigation bar, click Sources. In the top-right corner, click +new source.
3. On the Set up the source page, enter the name for the Smartsheets connector

and select Smartsheets from the Source type dropdown.
4. Authenticate via OAuth2.0 using the API access token from Prerequisites
5. Enter the start date and the ID of the spreadsheet you want to sync
6. Submit the form

For Airbyte Open Source:
1. Navigate to the Airbyte Open Source dashboard
2. Set the name for your source
3. Enter the API access token from Prerequisites
4. Enter the ID of the spreadsheet you want to sync
5. Enter a start sync date
6. Click Set up source

Supported sync modes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.smartsheet.com/content-center/best-practices/tips-tricks/api-getting-started
https://cloud.airbyte.com/workspaces

The Smartsheets source connector supports the following sync modes:

● Full Refresh | Overwrite
● Full Refresh | Append
● Incremental | Append
● Incremental | Deduped

Performance considerations
At the time of writing, the Smartsheets API rate limit is 300 requests per minute per API
access token.

Supported streams
This source provides a single stream per spreadsheet with a dynamic schema,
depending on your spreadsheet structure. For example, having a spreadsheet
Customers, the connector would introduce a stream with the same name and
properties typed according to Data type map (see below).

Important highlights
The Smartsheet Source is written to pull data from a single Smartsheet spreadsheet.
Unlike Google Sheets, Smartsheets only allows one sheet per Smartsheet - so a given
Airbyte connector instance can sync only one sheet at a time. To replicate multiple
spreadsheets, you can create multiple instances of the Smartsheet Source in Airbyte,
reusing the API token for all your sheets that you need to sync.

Note: Column headers must contain only alphanumeric characters or _ , as specified in
the Airbyte Protocol.

Data type map
The data type mapping adopted by this connector is based on the Smartsheet
documentation.

NOTE: For any column datatypes interpreted by Smartsheets beside DATE and
DATETIME, this connector's source schema generation assumes a string type, in
which case the format field is not required by Airbyte.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://developers.smartsheet.com/blog/smartsheet-api-best-practices#be-practical-adhere-to-rate-limiting-guidelines
https://smartsheet-platform.github.io/api-docs/index.html?python#column-types

Integration
Type

Airbyte
Type

Airbyte
Format

TEXT_NUMBER string

DATE string format:
date

DATETIME string format:
date-time

anything
else

string

The remaining column datatypes supported by Smartsheets are more complex types
(e.g. Predecessor, Dropdown List) and are not supported by this connector beyond its
string representation.

Appendix

Change Data Capture (CDC)

What is log-based incremental replication?

Many common databases support writing all record changes to log files for the purpose
of replication. A consumer of these log files (such as Airbyte) can read these logs while
keeping track of the current position within the logs in order to read all record changes
coming from DELETE/INSERT/UPDATE statements.

Syncing

The orchestration for syncing is similar to non-CDC database sources. After selecting a
sync interval, syncs are launched regularly. We read data from the log up to the time
that the sync was started. We do not treat CDC sources as infinite streaming sources.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

You should ensure that your schedule for running these syncs is frequent enough to
consume the logs that are generated. The first time the sync is run, a snapshot of the
current state of the data will be taken. This is done using SELECT statements and is
effectively a Full Refresh. Subsequent syncs will use the logs to determine which
changes took place since the last sync and update those. Airbyte keeps track of the
current log position between syncs.

A single sync might have some tables configured for Full Refresh replication and others
for Incremental. If CDC is configured at the source level, all tables with Incremental
selected will use CDC. All Full Refresh tables will replicate using the same process as
non-CDC sources. However, these tables will still include CDC metadata columns by
default.

The Airbyte Protocol outputs records from sources. Records from UPDATE statements
appear the same way as records from INSERT statements. We support different options
for how to sync this data into destinations using primary keys, so you can choose to
append this data, delete in place, etc.

We add some metadata columns for CDC sources:

● ab_cdc_lsn (postgres and sql server sources) is the point in the log where the
record was retrieved

● ab_cdc_log_file & ab_cdc_log_pos (specific to mysql source) is the file
name and position in the file where the record was retrieved

● ab_cdc_updated_at is the timestamp for the database transaction that
resulted in this record change and is present for records from
DELETE/INSERT/UPDATE statements

● ab_cdc_deleted_at is the timestamp for the database transaction that
resulted in this record change and is only present for records from DELETE
statements

Limitations

● CDC incremental is only supported for tables with primary keys. A CDC source
can still choose to replicate tables without primary keys as Full Refresh or a
non-CDC source can be configured for the same database to replicate the tables
without primary keys using standard incremental replication.

● Data must be in tables, not views.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● The modifications you are trying to capture must be made using
DELETE/INSERT/UPDATE. For example, changes made from TRUNCATE/ALTER
won't appear in logs and therefore in your destination.

● We do not support schema changes automatically for CDC sources. We
recommend resetting and resyncing data if you make a schema change.

● There are database-specific limitations. See the documentation pages for
individual connectors for more information.

● The records produced by DELETE statements only contain primary keys. All other
data fields are unset.

Current Support

● Postgres (For a quick video overview of CDC on Postgres, click here)
● MySQL
● Microsoft SQL Server / MSSQL

Coming Soon

● Oracle DB
● Please create a ticket if you need CDC support on another database!

Configuring the Airbyte Database
Airbyte uses different objects to store internal state and metadata. This data is stored
and manipulated by the various Airbyte components, but you have the ability to manage
the deployment of this database in the following two ways:

● Using the default Postgres database that Airbyte spins-up as part of the Docker
service described in the docker-compose.yml file: airbyte/db.

● Through a dedicated custom Postgres instance (the airbyte/db is in this case
unused, and can therefore be removed or de-activated from the
docker-compose.yml file). It's not a good practice to deploy mission-critical
databases on Docker or Kubernetes. Using a dedicated instance will provide
more reliability to your Airbyte deployment. Moreover, using a Cloud-managed
Postgres instance (such as AWS RDS our GCP Cloud SQL), you will benefit from
automatic backup and fine-grained sizing. You can start with a pretty small

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://www.youtube.com/watch?v=NMODvLgZvuE&ab_channel=Airbyte
https://github.com/airbytehq/airbyte/issues/new/choose

Unset

Unset

instance, but according to your Airbyte usage, the job database might grow and
require more storage if you are not truncating the job history.

The various entities are persisted in two internal databases:

● Job database
○ Data about executions of Airbyte Jobs and various runtime metadata.
○ Data about the internal orchestrator used by Airbyte, Temporal.io (Tasks,

Workflow data, Events, and visibility data).
● Config database

○ Connectors, Sync Connections and various Airbyte configuration objects.

Note that no actual data from the source (or destination) connectors ever transits or is
retained in this internal database.

If you need to interact with it, for example, to make back-ups or perform some clean-up
maintenances, you can also gain access to the Export and Import functionalities of this
database via the API or the UI (in the Admin page, in the Configuration Tab).

Connecting to an External Postgres database

Let's walk through what is required to use a Postgres instance that is not managed by
Airbyte. First, for the sake of the tutorial, we will run a new instance of Postgres in its
own docker container with the command below. If you already have Postgres running
elsewhere, you can skip this step and use the credentials for that in future steps.

docker run --rm --name airbyte-postgres -e
POSTGRES_PASSWORD=password -p 3000:5432 -d postgres

In order to configure Airbyte services with this new database, we need to edit the
following environment variables declared in the .env file (used by the docker-compose
command afterward):

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

DATABASE_USER=postgres

DATABASE_PASSWORD=password

DATABASE_HOST=host.docker.internal # refers to localhost of
host

DATABASE_PORT=3000

DATABASE_DB=postgres

By default, the Config Database and the Job Database use the same database instance
based on the above setting. It is possible, however, to separate the former from the
latter by specifying a separate parameters. For example:

CONFIG_DATABASE_USER=airbyte_config_db_user

CONFIG_DATABASE_PASSWORD=password

Additionally, you must redefine the JDBC URL constructed in the environment variable
DATABASE_URL to include the correct host, port, and database. If you need to provide
extra arguments to the JDBC driver (for example, to handle SSL) you should add it here
as well:

DATABASE_URL=jdbc:postgresql://host.docker.internal:3000/po
stgres?ssl=true&sslmode=require

Same for the config database if it is separate from the job database:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

CONFIG_DATABASE_URL=jdbc:postgresql://<host>:<port>/<databa
se>?<extra-parameters>

Initializing the database
INFO

This step is only required when you setup Airbyte with a custom database for the first
time.

If you provide an empty database to Airbyte and start Airbyte up for the first time, the
server will automatically create the relevant tables in your database, and copy the data.
Please make sure:

● The database exists in the server.
● The user has both read and write permissions to the database.
● The database is empty.

○ If the database is not empty, and has a table that shares the same name
as one of the Airbyte tables, the server will assume that the database has
been initialized, and will not copy the data over, resulting in server failure.
If you run into this issue, just wipe out the database, and launch the server
again.

Accessing the default database located in docker airbyte-db

In extraordinary circumstances while using the default airbyte-db Postgres database,
if a developer wants to access the data that tracks jobs, they can do so with the
following instructions.

As we've seen previously, the credentials for the database are specified in the .env file
that is used to run Airbyte. By default, the values are:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

DATABASE_USER=docker

DATABASE_PASSWORD=docker

DATABASE_DB=airbyte

If you have overridden these defaults, you will need to substitute them in the instructions
below.

The following command will allow you to access the database instance using psql.

docker exec -ti airbyte-db psql -U docker -d airbyte

Following tables are created

1. workspace : Contains workspace information such as name, notification
configuration, etc.

2. actor_definition : Contains the source and destination connector
definitions.

3. actor : Contains source and destination connectors information.
4. actor_oauth_parameter : Contains source and destination oauth

parameters.
5. operation : Contains dbt and custom normalization operations.
6. connection : Contains connection configuration such as catalog details,

source, destination, etc.
7. connection_operation : Contains the operations configured for a given

connection.
8. state. Contains the last saved state for a connection.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Data Types in Records
AirbyteRecords are required to conform to the Airbyte type system. This means that all
sources must produce schemas and records within these types, and all destinations
must handle records that conform to this type system.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Because Airbyte's interfaces are JSON-based, this type system is realized using JSON
schemas. In order to work around some limitations of JSON schemas, we add an
additional airbyte_type parameter to define more narrow types.

This type system does not constrain values. However, destinations may not fully support
all values - for example, Avro-based destinations may reject numeric values outside the
standard 64-bit representations, or databases may reject timestamps in the BC era.

The types
This table summarizes the available types. See the Specific Types section for an
explanation of optional parameters.

Airbyte
type

JSON Schema Examples

String {"type": "string""} "foo bar"

Boolean {"type": "boolean"} true or false

Date {"type": "string",
"format": "date"}

"2021-01-23", "2021-01-23
BC"

Timestamp
with
timezone

{"type": "string",
"format": "date-time",
"airbyte_type":
"timestamp_with_timezone
"}

"2022-11-22T01:23:45.123456
+05:00",
"2022-11-22T01:23:45Z BC"

Timestamp
without
timezone

{"type": "string",
"format": "date-time",
"airbyte_type":
"timestamp_without_timez
one"}

"2022-11-22T01:23:45",
"2022-11-22T01:23:45.123456
BC"

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://json-schema.org/
https://json-schema.org/

Time
without
timezone

{"type": "string",
"airbyte_type":
"time_with_timezone"}

"01:23:45.123456",
"01:23:45"

Time with
timezone

{"type": "string",
"airbyte_type":
"time_without_timezone"}

"01:23:45.123456+05:00",
"01:23:45Z"

Integer {"type": "integer"} or
{"type": "number",
"airbyte_type":
"integer"}

42

Number {"type": "number"} 1234.56

Array {"type": "array"};
optionally items

[1, 2, 3]

Object {"type": "object"};
optionally properties

{"foo": "bar"}

Union {"oneOf": [...]}

Record structure

As a reminder, sources expose a discover command, which returns a list of
AirbyteStreams, and a read method, which emits a series of
AirbyteRecordMessages. The type system determines what a valid json_schema
is for an AirbyteStream, which in turn dictates what messages read is allowed to
emit.

For example, a source could produce this AirbyteStream (remember that the
json_schema must declare "type": "object" at the top level):

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/blob/111131a193359027d0081de1290eb4bb846662ef/airbyte-protocol/models/src/main/resources/airbyte_protocol/airbyte_protocol.yaml#L122
https://github.com/airbytehq/airbyte/blob/111131a193359027d0081de1290eb4bb846662ef/airbyte-protocol/models/src/main/resources/airbyte_protocol/airbyte_protocol.yaml#L46-L66

Unset

{

"name": "users",

"json_schema": {

"type": "object",

"properties": {

"username": {

"type": "string"

},

"age": {

"type": "integer"

},

"appointments": {

"type": "array",

"items": {

"type": "string",

"format": "date-time",

"airbyte_type": "timestampt_with_timezone"

}

}

}

}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

}

Along with this AirbyteRecordMessage (observe that the data field conforms to the
json_schema from the stream):

{

"stream": "users",

"data": {

"username": "someone42",

"age": 84,

"appointments": ["2021-11-22T01:23:45+00:00",
"2022-01-22T14:00:00+00:00"]

},

"emitted_at": 1623861660

}

The top-level object must conform to the type system. This means that all of the fields
must also conform to the type system.

Nulls

Many sources cannot guarantee that all fields are present on all records. In these
cases, sources should simply not list them as required fields. In most cases, sources
do not need to list fields as required; by default, all fields are treated as nullable.

Unsupported types

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Destinations must have handling for all types, but they are free to cast types to a
convenient representation. For example, let's say a source discovers a stream with this
schema:

{

"type": "object",

"properties": {

"appointments": {

"type": "array",

"items": {

"type": "string",

"format": "date-time",

"airbyte_type": "timestamp_with_timezone"

}

}

}

}

Along with records which contain data that looks like this:

{"appointments": ["2021-11-22T01:23:45+00:00",
"2022-01-22T14:00:00+00:00"]}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

The user then connects this source to a destination that cannot natively handle array
fields. The destination connector is free to simply JSON-serialize the array back to a
string when pushing data into the end platform. In other words, the destination
connector could behave as though the source declared this schema:

{

"type": "object",

"properties": {

"appointments": {

"type": "string"

}

}

}

And emitted this record:

{"appointments": "[\"2021-11-22T01:23:45+00:00\",
\"2022-01-22T14:00:00+00:00\"]"}

Of course, destinations are free to choose the most convenient/reasonable
representation for any given value. JSON serialization is just one possible strategy. For
example, many SQL destinations will fall back to a native JSON type (e.g. Postgres'
JSONB type, or Snowflake's VARIANT).

Specific types

These sections explain how each specific type should be used.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Boolean

Boolean values are represented as native JSON booleans (i.e. true or false,
case-sensitive). Note that "truthy" and "falsy" values are not acceptable: "true",
"false", 1, and 0 are not valid booleans.

Dates and timestamps

Airbyte has five temporal types: date, timestamp_with_timezone,
timestamp_without_timezone, time_with_timezone, and
time_without_timezone. These are represented as strings with specific format
(either date or date-time).

However, JSON schema does not have a built-in way to indicate whether a field
includes timezone information. For example, given this JsonSchema:

{

"type": "object",

"properties": {

"created_at": {

"type": "string",

"format": "date-time"

}

}

}

Both {"created_at": "2021-11-22T01:23:45+00:00"} and {"created_at":
"2021-11-22T01:23:45"} are valid records.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

The airbyte_type field resolves this ambiguity; sources producing timestamp-ish
fields should choose either timestamp_with_timezone or
timestamp_without_timezone (or time with/without timezone).

Many sources (which were written before this system was formalized) do not specify the
timezone-ness of their fields. Destinations should default to using the with_timezone
variant in these cases.

All of these must be represented as RFC 3339§5.6 strings, extended with BC era
support. See the type definition descriptions for specifics.

Numeric values

The number and integer types can accept any value, without constraint on range.
However, this is still subject to compatibility with the destination: the destination (or
normalization) may throw an error if it attempts to write a value outside the range
supported by the destination warehouse / storage medium.

Airbyte does not currently support infinity/NaN values.

Arrays

Arrays contain 0 or more items, which must have a defined type. These types should
also conform to the type system. Arrays may require that all of their elements be the
same type ("items": {whatever type...}). They may instead require each
element to conform to one of a list of types ("items": [{first type...},
{second type...}, ... , {Nth type...}]).

Note that Airbyte's usage of the items field is slightly different than JSON schema's
usage, in which an "items": [...] actually constrains the element correpsonding to
the index of that item (AKA tuple-typing). This is becase destinations may have a
difficult time supporting tuple-typed arrays without very specific handling, and as such
are permitted to somewhat loosen their requirements.

Objects

As with arrays, objects may declare properties, each of which should have a type
which conforms to the type system.

Unions

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Sources may want to mix different types in a single field, e.g. "type": ["string",
"object"]. Destinations must handle this case, either using a native union type, or by
finding a native type that can accept all of the source's types (this frequently will be
string or json).

In some cases, sources may want to use multiple types for the same field. For example,
a user might have a property which holds one of two object schemas. This is supported
with JSON schema's oneOf type. Note that many destinations do not currently support
these types, and may not behave as expected.

Connection sync modes
A sync mode governs how Airbyte reads from a source and writes to a destination.
Airbyte provides different sync modes to account for various use cases.

● Full Refresh | Overwrite: Sync all records from the source and replace data in
destination by overwriting it.

● Full Refresh | Append: Sync all records from the source and add them to the
destination without deleting any data.

● Incremental Sync | Append: Sync new records from the source and add them to
the destination without deleting any data.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Incremental Sync | Deduped History: Sync new records from the source and add
them to the destination. Also provides a de-duplicated view mirroring the state of
the stream in the source.

Connections and Sync Modes
A connection is a configuration for syncing data between a source and a destination. To
setup a connection, a user must configure things such as:

● Sync schedule: when to trigger a sync of the data.
● Destination Namespace and stream names: where the data will end up being

written.
● A catalog selection: which streams and fields to replicate from the source
● Sync mode: how streams should be replicated (read and write):
● Optional transformations: how to convert Airbyte protocol messages (raw JSON

blob) data into some other data representations.

Sync schedules
Sync schedules are explained below. For information about catalog selections, see
AirbyteCatalog & ConfiguredAirbyteCatalog.

Syncs will be triggered by either:

● A manual request (i.e: clicking the "Sync Now" button in the UI)
● A schedule

When a scheduled connection is first created, a sync is executed as soon as possible.
After that, a sync is run once the time since the last sync (whether it was triggered
manually or due to a schedule) has exceeded the schedule interval. For example,
consider the following illustrative scenario:

● October 1st, 2pm, a user sets up a connection to sync data every 24 hours.
● October 1st, 2:01pm: sync job runs
● October 2nd, 2:01pm: 24 hours have passed since the last sync, so a sync is

triggered.
● October 2nd, 5pm: The user manually triggers a sync from the UI
● October 3rd, 2:01pm: since the last sync was less than 24 hours ago, no sync is

run

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● October 3rd, 5:01pm: It has been more than 24 hours since the last sync, so a
sync is run

Destination namespace
The location of where a connection replication will store data is referenced as the
destination namespace. The destination connectors should create and write records (for
both raw and normalized tables) in the specified namespace which should be
configurable in the UI via the Namespace Configuration field (or NamespaceDefinition in
the API). You can read more about configuring namespaces here.

Destination stream name

Prefix stream name

Stream names refer to table names in a typical RDBMS. But it can also be the name of
an API endpoint, etc. Similarly to the namespace, stream names can be configured to
diverge from their names in the source with a "prefix" field. The prefix is prepended to
the source stream name in the destination.

Stream-specific customization
All the customization of namespace and stream names described above will be equally
applied to all streams selected for replication in a catalog per connection. If you need
more granular customization, stream by stream, for example, or with different logic
rules, then you could follow the tutorial on customizing transformations with dbt.

Sync modes
A sync mode governs how Airbyte reads from a source and writes to a destination.
Airbyte provides different sync modes to account for various use cases. To minimize
confusion, a mode's behavior is reflected in its name. The easiest way to understand
Airbyte's sync modes is to understand how the modes are named.

1. The first part of the name denotes how the source connector reads data from the
source:

i. Incremental: Read records added to the source since the last sync job.
(The first sync using Incremental is equivalent to a Full Refresh)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

■ Method 1: Using a cursor. Generally supported by all connectors
whose data source allows extracting records incrementally.

■ Method 2: Using change data capture. Only supported by some
sources. See CDC for more info.

ii. Full Refresh: Read everything in the source.
2. The second part of the sync mode name denotes how the destination connector

writes data. This is not affected by how the source connector produced the data:
i. Overwrite: Overwrite by first deleting existing data in the destination.
ii. Append: Write by adding data to existing tables in the destination.
iii. Deduped History: Write by first adding data to existing tables in the

destination to keep a history of changes. The final table is produced by
de-duplicating the intermediate ones using a primary key.

A sync mode is therefore, a combination of a source and destination mode together.
The UI exposes the following options, whenever both source and destination connectors
are capable to support it for the corresponding stream:

● Full Refresh Overwrite: Sync the whole stream and replace data in destination by
overwriting it.

● Full Refresh Append: Sync the whole stream and append data in destination.
● Incremental Append: Sync new records from stream and append data in

destination.
● Incremental Deduped History: Sync new records from stream and append data in

destination, also provides a de-duplicated view mirroring the state of the stream
in the source.

Optional operations

Airbyte basic normalization

As described by the Airbyte Protocol from the Airbyte Specifications, replication is
composed of source connectors that are transmitting data in a JSON format. It is then
written as such by the destination connectors.

On top of this replication, Airbyte provides the option to enable or disable an additional
transformation step at the end of the sync called basic normalization. This operation is:

● Only available for destinations that support dbt execution
● Automatically generates a pipeline or DAG of dbt transformation models to

convert JSON blob objects into normalized tables

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● Runs and applies these dbt models to the data written in the destination

NOTE

Normalizing data may cause an increase in your destination's compute cost. This cost
will vary depending on the amount of data that is normalized and is not related to
Airbyte credit usage.

Custom sync operations

Further operations can be included in a sync on top of Airbyte basic normalization (or
even to replace it completely). See operations for more details.

Full Refresh - Overwrite

Overview
The Full Refresh modes are the simplest methods that Airbyte uses to sync data, as
they always retrieve all available information requested from the source, regardless of
whether it has been synced before. This contrasts with Incremental sync, which does
not sync data that has already been synced before.

In the Overwrite variant, new syncs will destroy all data in the existing destination table
and then pull the new data in. Therefore, data that has been removed from the source
after an old sync will be deleted in the destination table.

Example Behavior
On the nth sync of a full refresh connection:

Replace existing data with new data. The connection
does not create any new tables.
data in the destination before the sync:

Languag
es

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Python

Java

new data:

Languages

Python

Java

Ruby

data in the destination after the sync:

Languages

Python

Java

Ruby

Note: This is how Singer target-bigquery does it.

In the future
We will consider making other flavors of full refresh configurable as first-class citizens in
Airbyte. e.g. On new data, copy old data to a new table with a timestamp, and then
replace the original table with the new data. As always, we will focus on adding these
options in such a way that the behavior of each connector is both well documented and
predictable.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Full Refresh - Append

Overview
The Full Refresh modes are the simplest methods that Airbyte uses to sync data, as
they always retrieve all available data requested from the source, regardless of whether
it has been synced before. This contrasts with Incremental sync, which does not sync
data that has already been synced before.

In the Append variant, new syncs will take all data from the sync and append it to the
destination table. Therefore, if syncing similar information multiple times, every sync will
create duplicates of already existing data.

Example Behavior
On the nth sync of a full refresh connection:

Add new data to the same table. Do not touch existing
data.
data in the destination before the nth sync:

Languages

Python

Java

new data:

Languages

Python

Java

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Ruby

data in the destination after the nth sync:

Languages

Python

Java

Python

Java

Ruby

This could be useful when we are interested to know about deletion of data in the
source. This is possible if we also consider the date, or the batch id from which the data
was written to the destination:

new data at the n+1th sync:

Languages

Python

Ruby

data in the destination after the n+1th sync:

Languages batch
id

Python 1

Java 1

Python 2

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Java 2

Ruby 2

Python 3

Ruby 3

In the future
We will consider making a better detection of deletions in the source, especially with
Incremental, and Change Data Capture based sync modes for example.

Incremental Sync - Append

Overview
Airbyte supports syncing data in Incremental Append mode i.e: syncing only replicate
new or modified data. This prevents re-fetching data that you have already replicated
from a source. If the sync is running for the first time, it is equivalent to a Full Refresh
since all data will be considered as new.

In this flavor of incremental, records in the warehouse destination will never be deleted
or mutated. A copy of each new or updated record is appended to the data in the
warehouse. This means you can find multiple copies of the same record in the
destination warehouse. We provide an "at least once" guarantee of replicating each
record that is present when the sync runs.

Definitions

A cursor is the value used to track whether a record should be replicated in an
incremental sync. A common example of a cursor would be a timestamp from an
updated_at column in a database table.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

A cursor field is the field or column in the data where that cursor can be found.
Extending the above example, the updated_at column in the database would be the
cursor field, while the cursor is the actual timestamp value used to determine if a
record should be replicated.

We will refer to the set of records that the source identifies as being new or updated as
a delta.

Rules
As mentioned above, the delta from a sync will be appended to the existing data in the
data warehouse. Incremental will never delete or mutate existing records. Let's walk
through a few examples.

Newly Created Record

Assume that updated_at is our cursor_field. Let's say the following data already
exists into our data warehouse.

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

In the next sync, the delta contains the following record:

name deceas
ed

updated
_at

Louis XVII false 1785

At the end of this incremental sync, the data warehouse would now contain:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

Louis XVII false 1785

Updating a Record

Let's assume that our warehouse contains all the data that it did at the end of the
previous section. Now, unfortunately the king and queen lose their heads. Let's see that
delta:

name deceas
ed

updated
_at

Louis XVI true 1793

Marie
Antoinette

true 1793

The output we expect to see in the warehouse is as follows:

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

Louis XVII false 1785

Louis XVI true 1793

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Marie
Antoinette

true 1793

Source-Defined Cursor
Some sources are able to determine the cursor that they use without any user input. For
example, in the exchange rates source, the source knows that the date field should be
used to determine the last record that was synced. In these cases, simply select the
incremental option in the UI.

(You can find a more technical details about the configuration data model here).

User-Defined Cursor
Some sources cannot define the cursor without user input. For example, in the postgres
source, the user needs to choose which column in a database table they want to use as
the cursor field. In these cases, select the column in the sync settings dropdown
that should be used as the cursor field.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

(You can find a more technical details about the configuration data model here).

Getting the Latest Snapshot of data
As demonstrated in the examples above, with Incremental Append, a record which was
updated in the source will be appended to the destination rather than updated in-place.
This means that if data in the source uses a primary key (e.g: user_id in the users
table), then the destination will end up having multiple records with the same primary
key value.

However, some use cases require only the latest snapshot of the data. This is available
by using other flavors of sync modes such as Incremental - Deduped History instead.

Note that in Incremental Append, the size of the data in your warehouse increases
monotonically since an updated record in the source is appended to the destination
rather than updated in-place.

If you only care about having the latest snapshot of your data, you may want to look at
other sync modes that will keep smaller copies of the replicated data or you can
periodically run cleanup jobs which retain only the latest instance of each record.

Inclusive Cursors
When replicating data incrementally, Airbyte provides an at-least-once delivery
guarantee. This means that it is acceptable for sources to re-send some data when ran
incrementally. One case where this is particularly relevant is when a source's cursor is
not very granular. For example, if a cursor field has the granularity of a day (but not

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

hours, seconds, etc), then if that source is run twice in the same day, there is no way for
the source to know which records that are that date were already replicated earlier that
day. By convention, sources should prefer resending data if the cursor field is
ambiguous.

Additionally, you may run into behavior where you see the same row being emitted
during each sync. This will occur if your data has not changed and you attempt to run
additional syncs, as the cursor field will always be greater than or equal to itself, causing
it to pull the latest row multiple times until there is new data at the source.

Known Limitations
Due to the use of a cursor column, if modifications to the underlying records are made
without properly updating the cursor field, then the updated records won't be picked up
by the Incremental sync as expected since the source connectors extract delta rows
using a SQL query looking like:

SELECT * FROM table WHERE cursor_field >=
'last_sync_max_cursor_field_value'

Let's say the following data already exists into our data warehouse.

name deceased updated_at

Louis XVI false 1754

Marie
Antoinette

false 1755

At the start of the next sync, the source data contains the following new record:

name deceased updated_at

Louis XVI true 1754

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

At the end of the second incremental sync, the data warehouse would still contain data
from the first sync because the delta record did not provide a valid value for the cursor
field (the cursor field is not greater than last sync's max value, 1754 < 1755), so it is
not emitted by the source as a new or modified record.

name deceased updated_at

Louis XVI false 1754

Marie
Antoinette

false 1755

Similarly, if multiple modifications are made during the same day to the same records. If
the frequency of the sync is not granular enough (for example, set for every 24h), then
intermediate modifications to the data are not going to be detected and emitted. Only
the state of data at the time the sync runs will be reflected in the destination.

Those concerns could be solved by using a different incremental approach based on
binary logs, Write-Ahead-Logs (WAL), or also called Change Data Capture (CDC).

The current behavior of Incremental is not able to handle source schema changes yet,
for example, when a column is added, renamed or deleted from an existing table etc. It
is recommended to trigger a Full refresh - Overwrite to correctly replicate the data to the
destination with the new schema changes.

If you are not satisfied with how transformations are applied on top of the appended
data, you can find more relevant SQL transformations you might need to do on your
data in the Connecting EL with T using SQL (part 1/2)

Incremental Sync - Deduped History

High-Level Context
This connector syncs data incrementally, which means that only new or modified data
will be synced. In contrast with the Incremental Append mode, this mode updates rows
that have been modified instead of adding a new version of the row with the updated
data. Simply put, if you've synced a row before and it has since been updated, this

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

mode will combine the two rows in the destination and use the updated data. On the
other hand, the Incremental Append mode would just add a new row with the updated
data.

Overview
Airbyte supports syncing data in Incremental Deduped History mode i.e:

1. Incremental means syncing only replicate new or modified data. This prevents
re-fetching data that you have already replicated from a source. If the sync is
running for the first time, it is equivalent to a Full Refresh since all data will be
considered as new.

2. Deduped means that data in the final table will be unique per primary key (unlike
Append modes). This is determined by sorting the data using the cursor field and
keeping only the latest de-duplicated data row. In dimensional data warehouse
jargon defined by Ralph Kimball, this is referred as a Slowly Changing Dimension
(SCD) table of type 1.

3. History means that an additional intermediate table is created in which data is
being continuously appended to (with duplicates exactly like Append modes).
With the use of primary key fields, it is identifying effective start and end dates
of each row of a record. In dimensional data warehouse jargon, this is referred as
a Slowly Changing Dimension (SCD) table of type 2.

In this flavor of incremental, records in the warehouse destination will never be deleted
in the history tables (named with a _scd suffix), but might not exist in the final table. A
copy of each new or updated record is appended to the history data in the warehouse.
Only the end date column is mutated when a new version of the same record is inserted
to denote effective date ranges of a row. This means you can find multiple copies of the
same record in the destination warehouse. We provide an "at least once" guarantee of
replicating each record that is present when the sync runs.

On the other hand, records in the final destination can potentially be deleted as they are
de-duplicated. You should not find multiple copies of the same primary key as these
should be unique in that table.

Definitions

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

A cursor is the value used to track whether a record should be replicated in an
incremental sync. A common example of a cursor would be a timestamp from an
updated_at column in a database table.

A cursor field is the field or column in the data where that cursor can be found.
Extending the above example, the updated_at column in the database would be the
cursor field, while the cursor is the actual timestamp value used to determine if a
record should be replicated.

We will refer to the set of records that the source identifies as being new or updated as
a delta.

A primary key is one or multiple (called composite primary keys) fields or
columns that is used to identify the unique entities of a table. Only one row per primary
key value is permitted in a database table. In the data warehouse, just like in
incremental - Append, multiple rows for the same primary key can be found in the
history table. The unique records per primary key behavior is mirrored in the final table
with incremental deduped sync mode. The primary key is then used to refer to the entity
which values should be updated.

Rules
As mentioned above, the delta from a sync will be appended to the existing history data
in the data warehouse. In addition, it will update the associated record in the final table.
Let's walk through a few examples.

Newly Created Record

Assume that updated_at is our cursor_field and name is the primary_key. Let's
say the following data already exists into our data warehouse.

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

In the next sync, the delta contains the following record:

name deceas
ed

updated
_at

Louis XVII false 1785

At the end of this incremental sync, the data warehouse would now contain:

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

Louis XVII false 1785

Updating a Record

Let's assume that our warehouse contains all the data that it did at the end of the
previous section. Now, unfortunately the king and queen lose their heads. Let's see that
delta:

name deceas
ed

updated
_at

Louis XVI true 1793

Marie
Antoinette

true 1793

The output we expect to see in the warehouse is as follows:

In the history table:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

name deceas
ed

updated
_at

start_
at

end_
at

Louis XVI false 1754 1754 1793

Louis XVI true 1793 1793 NULL

Louis XVII false 1785 1785 NULL

Marie
Antoinette

false 1755 1755 1793

Marie
Antoinette

true 1793 1793 NULL

In the final de-duplicated table:

name deceas
ed

updated
_at

Louis XVI true 1793

Louis XVII false 1785

Marie
Antoinette

true 1793

Source-Defined Cursor
Some sources are able to determine the cursor that they use without any user input. For
example, in the exchange rates source, the source knows that the date field should be
used to determine the last record that was synced. In these cases, simply select the
incremental option in the UI.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

(You can find a more technical details about the configuration data model here).

User-Defined Cursor
Some sources cannot define the cursor without user input. For example, in the postgres
source, the user needs to choose which column in a database table they want to use as
the cursor field. In these cases, select the column in the sync settings dropdown
that should be used as the cursor field.

(You can find a more technical details about the configuration data model here).

Source-Defined Primary key
Some sources are able to determine the primary key that they use without any user
input. For example, in the (JDBC) Database sources, primary key can be defined in the
table's metadata.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

User-Defined Primary key
Some sources cannot define the cursor without user input or the user may want to
specify their own primary key on the destination that is different from the source
definitions. In these cases, select the column in the sync settings dropdown that should
be used as the primary key or composite primary keys.

In this example, we selected both the campaigns.id and campaigns.name as the
composite primary key of our campaigns table.

Note that in Incremental Deduped History, the size of the data in your warehouse
increases monotonically since an updated record in the source is appended to the
destination history table rather than updated in-place as it is done with the final table. If
you only care about having the latest snapshot of your data, you may want to
periodically run cleanup jobs which retain only the latest instance of each record in the
history tables.

Inclusive Cursors
When replicating data incrementally, Airbyte provides an at-least-once delivery
guarantee. This means that it is acceptable for sources to re-send some data when ran
incrementally. One case where this is particularly relevant is when a source's cursor is

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

not very granular. For example, if a cursor field has the granularity of a day (but not
hours, seconds, etc), then if that source is run twice in the same day, there is no way for
the source to know which records that are that date were already replicated earlier that
day. By convention, sources should prefer resending data if the cursor field is
ambiguous.

Known Limitations
Due to the use of a cursor column, if modifications to the underlying records are made
without properly updating the cursor field, then the updated records won't be picked up
by the Incremental sync as expected since the source connectors extract delta rows
using a SQL query looking like:

select * from table where cursor_field >
'last_sync_max_cursor_field_value'

Let's say the following data already exists into our data warehouse.

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

At the start of the next sync, the source data contains the following new record:

name deceas
ed

updated
_at

Louis
XVI

true 1754

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

At the end of the second incremental sync, the data warehouse would still contain data
from the first sync because the delta record did not provide a valid value for the cursor
field (the cursor field is not greater than last sync's max value, 1754 < 1755), so it is
not emitted by the source as a new or modified record.

name deceas
ed

updated
_at

Louis XVI false 1754

Marie
Antoinette

false 1755

Similarly, if multiple modifications are made during the same day to the same records. If
the frequency of the sync is not granular enough (for example, set for every 24h), then
intermediate modifications to the data are not going to be detected and emitted. Only
the state of data at the time the sync runs will be reflected in the destination.

Those concerns could be solved by using a different incremental approach based on
binary logs, Write-Ahead-Logs (WAL), or also called Change Data Capture (CDC).

The current behavior of Incremental is not able to handle source schema changes yet,
for example, when a column is added, renamed or deleted from an existing table etc. It
is recommended to trigger a Full refresh - Overwrite to correctly replicate the data to the
destination with the new schema changes.

Additionally, this sync mode is only supported for destinations where dbt/normalization
is possible for the moment. The de-duplicating logic is indeed implemented as dbt
models as part of a sequence of transformations applied after the Extract and Load
activities (thus, an ELT approach). Nevertheless, it is theoretically possible that
destinations can handle directly this logic (maybe in the future) before actually writing
records to the destination (as in traditional ETL manner), but that's not the way it is
implemented at this time.

If you are not satisfied with how transformations are applied on top of the appended
data, you can find more relevant SQL transformations you might need to do on your
data in the Connecting EL with T using SQL (part 1/2)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Exchange Rates API

Overview
The exchange rates integration is a toy integration to demonstrate how Airbyte works
with a very simple source.

It pulls all its data from https://exchangeratesapi.io

Output schema

It contains one stream: exchange_rates

Each record in the stream contains many fields:

● The date of the record
● One field for every supported currency which contain the value of that currency

on that date.

Data type mapping

Currencies are number and the date is a string.

Features

Feature Supported?

Full Refresh Sync Yes

Incremental - Append
Sync

Yes

Namespaces No

Getting started

Requirements

● API Access Key

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://exchangeratesapi.io/
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html

Setup guide

In order to get an API Access Key please go to this page and enter needed info.
After registration and login you will see your API Access Key, also you may find it
here.

If you have free subscription plan (you may check it here) this means that you will
have 2 limitations:

1. 1000 API calls per month.
2. You won't be able to specify the base parameter, meaning that you will be

dealing only with default base value which is EUR.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://manage.exchangeratesapi.io/signup/free
https://manage.exchangeratesapi.io/dashboard
https://manage.exchangeratesapi.io/plan

Unset

A Beginner's Guide to the AirbyteCatalog

Overview

The goal of this article is to make the AirbyteCatalog approachable to someone
contributing to Airbyte for the first time. If you are looking to get deeper into the details
of the catalog, you can read our technical specification on it here.

The goal of the AirbyteCatalog is to describe what data is available in a source. The
goal of the ConfiguredAirbyteCatalog is to, based on an AirbyteCatalog,
specify how data from the source is replicated.

Contents

This article will illustrate how to use AirbyteCatalog via a series of examples. We
recommend reading the Database Example first. The other examples, will refer to
knowledge described in that section. After that, jump around to whichever example is
most pertinent to your inquiry.

● Postgres Example
● API Example

○ Static Streams Example
○ Dynamic Streams Example

● Nested Schema Example

In order to understand in depth how to configure incremental data replication, head over
to the incremental replication docs.

Database Example
Let's jump into an example using a relational database. We will assume we have a
database with the following schema:

CREATE TABLE "airlines" (

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

"id" INTEGER,

"name" VARCHAR

);

CREATE TABLE "pilots" (

"id" INTEGER,

"airline_id" INTEGER,

"name" VARCHAR

);

AirbyteCatalog

We would represent this data in a catalog as follows:

{

"streams": [

{

"name": "airlines",

"supported_sync_modes": [

"full_refresh",

"incremental"

],

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"source_defined_cursor": false,

"json_schema": {

"type": "object",

"properties": {

"id": {

"type": "number"

},

"name": {

"type": "string"

}

}

}

},

{

"name": "pilots",

"supported_sync_modes": [

"full_refresh",

"incremental"

],

"source_defined_cursor": false,

"json_schema": {

"type": "object",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"properties": {

"id": {

"type": "number"

},

"airline_id": {

"type": "number"

},

"name": {

"type": "string"

}

}

}

}

]

}

The catalog is structured as a list of AirbyteStream. In the case of a database a
"stream" is analogous to a table. (For APIs the mapping can be a more creative; we will
discuss it later in API Examples)

Let's walk through what each field in a stream means.

● name - The name of the stream.
● supported_sync_modes - This field lists the type of data replication that this

source supports. The possible values in this array include FULL_REFRESH (docs)
and INCREMENTAL (docs).

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

● source_defined_cursor - If the stream supports INCREMENTAL replication,
then this field signals whether the source can figure out how to detect new
records on its own or not.

● json_schema - This field is a JsonSchema object that describes the structure of
the data. Notice that each key in the properties object corresponds to a
column name in our database table.

Now we understand what data is available from this source. Next we will configure how
we want to replicate that data.

ConfiguredAirbyteCatalog

Let's say that we do not care about replicating the pilot data at all. We do want to
replicate the airlines data as a FULL_REFRESH. Here's what our
ConfiguredAirbyteCatalog would look like.

{

"streams": [

{

"sync_mode": "FULL_REFRESH",

"stream": {

"name": "airlines",

"supported_sync_modes": [

"full_refresh",

"incremental"

],

"source_defined_cursor": false,

"json_schema": {

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://json-schema.org/understanding-json-schema

"type": "object",

"properties": {

"id": {

"type": "number"

},

"name": {

"type": "string"

}

}

}

}

}

]

}

Just as with the AirbyteCatalog the ConfiguredAirbyteCatalog contains a list.
This time it is a list of ConfiguredAirbyteStream (instead of just AirbyteStream).

Let's walk through each field in the ConfiguredAirbyteStream:

● sync_mode - This field must be one of the values that was in
supported_sync_modes in the AirbyteStream - Configures which sync
mode will be used when data is replicated.

● stream - Hopefully this one looks familiar! This field contains an
AirbyteStream. It should be identical to the one we saw in the
AirbyteCatalog.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● cursor_field - When sync_mode is INCREMENTAL and
source_defined_cursor = false, this field configures which field in the
stream will be used to determine if a record should be replicated or not. Read
more about this concept in our documentation of incremental replication.

Summary of the Postgres Example

When thinking about AirbyteCatalog and ConfiguredAirbyteCatalog,
remember that the AirbyteCatalog describes what data is present in the source (and
metadata around what replication configuration it can support). It is output by the
discover method of source. It should be treated as an immutable object; if you are
ever manually editing a catalog outside of a source, you've gone off the rails. The
ConfiguredAirbyteCatalog is a mutable configuration object that specifies, for
each AirbyteStream, how (and if) it should be replicated. The
ConfiguredAirbyteCatalog does this by wrapping each AirbyteStream in an
AirbyteCatalog inside a ConfiguredAirbyteStream.

API Examples

The AirbyteCatalog offers the flexibility in how to model the data for an API. In the
next two examples, we will model data from the same API--a stock ticker--in two
different ways. In the first, the source will return a single stream called ticker, and in
the second, the source with return a stream for each stock symbol it is configured to
retrieve data for. Each stream's name will be a stock symbol.

Static Streams Example

Let's imagine we want to create a basic Stock Ticker source. The goal of this source is
to take in a single stock symbol and return a single stream. We will call the stream
ticker and will contain the closing price of the stock. We will assume that you already
have a rough understanding of the AirbyteCatalog and the
ConfiguredAirbyteCatalog from the previous database example.

AirbyteCatalog

Here is what the AirbyteCatalog might look like.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

{

"streams": [

{

"name": "ticker",

"supported_sync_modes": [

"full_refresh",

"incremental"

],

"source_defined_cursor": false,

"json_schema": {

"type": "object",

"properties": {

"symbol": {

"type": "string"

},

"price": {

"type": "number"

},

"date": {

"type": "string"

}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

}

}

}

]

}

This catalog looks pretty similar to the AirbyteCatalog that we created for the
Database Example. For the data we've picked here, you can think about ticker as a
table and then each field it returns in a record as a column, so it makes sense that these
look pretty similar.

ConfiguredAirbyteCatalog

The ConfiguredAirbyteCatalog follows the same rules as we described in the
Database Example. It just wraps the AirbyteCatalog described above.

Dynamic Streams Example

Now let's build a stock ticker source that handles returning ticker data for multiple
stocks. The name of each stream will be the stock symbol that it represents.

AirbyteCatalog

{

"streams": [

{

"name": "TSLA",

"supported_sync_modes": [

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"full_refresh",

"incremental"

],

"source_defined_cursor": false,

"json_schema": {

"type": "object",

"properties": {

"symbol": {

"type": "string"

},

"price": {

"type": "number"

},

"date": {

"type": "string"

}

}

}

},

{

"name": "FB",

"supported_sync_modes": [

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"full_refresh",

"incremental"

],

"source_defined_cursor": false,

"json_schema": {

"type": "object",

"properties": {

"symbol": {

"type": "string"

},

"price": {

"type": "number"

},

"date": {

"type": "string"

}

}

}

}

]

}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

This example provides another way of thinking about exposing data in a source. As a
developer building a source, you can model the AirbyteCatalog for a source
however makes most sense to the use case you are trying to fulfill.

Nested Schema Example
Often, a data source contains "nested" data. In other words this is data where each
record contains other objects nested inside it. Cases like this cannot be easily modeled
just as tables / columns. This is why Airbyte uses JsonSchema to model the schema of
its streams.

Let's imagine we are modeling a flight object. A flight object might look like this:

{

"airline": "alaska",

"origin": {

"airport_code": "SFO",

"terminal": "2",

"gate": "G23"

},

"destination": {

"airport_code": "JFK",

"terminal": "7",

"gate": "1"

}

}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

The AirbyteCatalog would look like this:

{

"streams": [

{

"name": "flights",

"supported_sync_modes": [

"full_refresh"

],

"source_defined_cursor": false,

"json_schema": {

"type": "object",

"properties": {

"airline": {

"type": "string"

},

"origin": {

"type": "object",

"properties": {

"airport_code": {

"type": "string"

},

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"terminal": {

"type": "string"

},

"gate": {

"type": "string"

}

}

},

"destination": {

"type": "object",

"properties": {

"airport_code": {

"type": "string"

},

"terminal": {

"type": "string"

},

"gate": {

"type": "string"

}

}

}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

}

}

}

]

}

Because Airbyte uses JsonSchema to model the schema of streams, it is able to handle
arbitrary nesting of data in a way that a table / column based model cannot.

Airbyte Protocol

Goals
The Airbyte Protocol describes a series of standard components and all the interactions
between them in order to declare an ELT pipeline. All message passing across
components is done via serialized JSON messages for inter-process communication.

This document describes the protocol as it exists in its CURRENT form. Stay tuned for
an RFC on how the protocol will evolve.

This document is intended to contain ALL the rules of the Airbyte Protocol in one place.
Anything not contained in this document is NOT part of the Protocol. At the time of
writing, there is one known exception, which is the Supported Data Types, which
contains rules on data types that are part of the Protocol. That said, there are additional
articles, e.g. A Beginner's Guide to the Airbyte Catalog that repackage the information in
this document for different audiences.

Key Concepts
There are 2 major components in the Airbyte Protocol: Source and Destination. These
components are referred to as Actors. A source is an application that is described by a

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

series of standard interfaces. This application extracts data from an underlying data
store. A data store in this context refers to the tool where the data is actually stored. A
data store includes: databases, APIs, anything that produces data, etc. For example,
the Postgres Source is a Source that pulls from Postgres (which is a data store). A
Destination is an application that is described by a series of standard interfaces that
loads data into a data store.

The key primitives that the Protocol uses to describe data are Catalog, Configured
Catalog, Stream, Configured Stream, and Field:

● Stream - A Stream describes the schema of a resource and various metadata
about how a user can interact with that resource. A resource in this context might
refer to a database table, a resource in a REST API, or a data stream.

● Field - A Field refers to a "column" in a Stream. In a database this would be a
column; in a JSON object it is a field.

● Catalog - A Catalog is a list of Streams that describes the data in the data store
that a Source represents.

An Actor can advertise information about itself with an Actor Specification. One of the
main pieces of information the specification shares is what information is needed to
configure an Actor.

Each of these concepts is described in greater depth in their respective section.

Actor Interface
This section describes important details about the interface over actors. It reviews parts
of the interface that are the same across all actors. It also describes some invariants for
all methods in actor interfaces.

Common Interface Methods

The following part of the interface is identical across all actors:

spec() -> ConnectorSpecification

check(Config) -> AirbyteConnectionStatus

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

These methods are described in their respective sections (spec, check).

Interface Invariants

The output of each method in actor interface is wrapped in an AirbyteMessage. This
struct is an envelope for the return value of any message in the described interface. See
the section the AirbyteMessage section below for more details. For the sake of brevity,
interface diagrams will elide these AirbyteMessages.

Additionally, all methods described in the protocol can emit AirbyteLogMessages and
AirbyteTraceMessages (for more details see Logging). These messages allow an
actor to emit logs and other informational metadata. All subsequent method signatures
will assume that any number of messages of these types (wrapped in the
AirbyteMessage) may be emitted.

Each method in the protocol has 3 parts:
1. Input: these are the arguments passed to the method.
2. Data Channel Egress (Output): all outputs from a method are via STDOUT. While

some method signatures declare a single return value, in practice, any number of
AirbyteLogMessages and AirbyteTraceMessages may be emitted. An
actor is responsible for closing STDOUT to declare that it is done.

3. Data Channel Ingress: after a method begins running, data can be passed to it
via STDIN. For example, records are passed to a Destination on STDIN so that it
can load them into a data warehouse.

Sources are a special case and do not have a Data Channel Ingress.

Additional Invariants

● All arguments passed to an Actor and all messages emitted from an Actor are
serialized JSON.

● All messages emitted from Actors must be wrapped in an AirbyteMessage(ref)
envelope.

● Messages not wrapped in the AirbyteMessage must be dropped (e.g. not be
passed from Source to Destination). However certain implementations of the
Airbyte Protocol may choose to store and log unknown messages for debugging
purposes.

● Each message must be on its own line. Multiple messages cannot be sent on the
same line. The JSON objects cannot be serialized across multiple lines.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

● STDERR should only be used for log messages (for errors). All other Data
Channel Data moves on STDIN and STDOUT.

Common Interface

Spec

spec() -> ConnectorSpecification

The spec command allows an actor to broadcast information about itself and how it can
be configured.

Input:
1. none.

Output:
1. spec - a ConnectorSpecification wrapped in an AirbyteMessage of type spec.

See the Actor Specification for more details on the information in the spec.

Check

check(Config) -> AirbyteConnectionStatus

The check command validates that, given a configuration, that the Actor is able to
connect and access all resources that it needs in order to operate. e.g. Given some
Postgres credentials, it determines whether it can connect to the Postgres database. If it
can, it will return a success response. If it fails (perhaps the password is incorrect), it will
return a failed response and (when possible) a helpful error message. If an actor's
check command succeeds, it is expected that all subsequent methods in the sync will
also succeed.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Input:
1. config - A configuration JSON object that has been validated using

ConnectorSpecification#connectionSpecification (see
ActorSpecification for information on connectionSpecification).

Output:
1. connectionStatus - an AirbyteConnectionStatus Message wrapped in an

AirbyteMessage of type connection_status.

Source
A Source is an application that extracts data from an underlying data store. A Source
implements the following interface:

spec() -> ConnectorSpecification

check(Config) -> AirbyteConnectionStatus

discover(Config) -> AirbyteCatalog

read(Config, ConfiguredAirbyteCatalog, State) ->
Stream<AirbyteRecordMessage | AirbyteStateMessage>

spec and check are the same as the commands described in the Common Commands
section.

Discover

The discover method detects and describes the structure of the data in the data store
and which Airbyte configurations can be applied to that data. For example, given a
Postges source and valid Config, discover would return a list of available tables as
streams.

Input:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

1. config - A configuration JSON object that has been validated using
ConnectorSpecification#connectionSpecification (see
ActorSpecification for information on connectionSpecification).

Output:
1. catalog - an AirbyteCatalog wrapped in an AirbyteMessage of type

catalog. See the Catalog Section for details.

Read

read extracts data from the underlying data store and emits it as
AirbyteRecordMessages. It also emits AirbyteStateMessages to allow
checkpointing replication.

Input:
1. config - A configuration JSON object that has been validated using

ConnectorSpecification#connectionSpecification (see
ActorSpecification for information on connectionSpecification).

2. configured catalog - A ConfiguredAirbyteCatalog is built on top of the
catalog returned by discover. The ConfiguredAirbyteCatalog specifies
HOW the data in the catalog should be replicated. The catalog is documented in
the Catalog Section.

3. state - An JSON object that represents a checkpoint in the replication. This
object is only ever written or read by the source, so it is a JSON blob with
whatever information is necessary to keep track of how much of the data source
has already been read (learn more in the State & Checkpointing Section).

Output:
1. message stream - An iterator of AirbyteRecordMessages and

AirbyteStateMessages piped to the Data Channel Egress i.e: stdout.
○ A source outputs AirbyteStateMessages in order to allow

checkpointing data replication. State is described in more detail below in
the State & Checkpointing section.

○ Only AirbyteRecordMessages that contain streams that are in the
catalog will be processed. Those that do not will be ignored. See Schema
Mismatches for more details.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

○ AirbyteRecordMessages from multiple streams can be multiplexed/mixed
together, and do not need to be emitted serially as a group.

Destination
A destination receives data on the Data Channel Ingress and loads it into an underlying
data store (e.g. data warehouse or database).

It implements the following interface.

spec() -> ConnectorSpecification

check(Config) -> AirbyteConnectionStatus

write(Config, AirbyteCatalog,
Stream<AirbyteMessage>(stdin)) ->
Stream<AirbyteStateMessage>

For the sake of brevity, we will not re-describe spec and check. They are exactly the
same as those commands described for the Source.

Write

Input:
1. config - A configuration JSON object that has been validated using the

ConnectorSpecification.
2. catalog - An AirbyteCatalog. This catalog should be a subset of the

catalog returned by the discover command. Any
AirbyteRecordMessagess that the destination receives that do not match the
structure described in the catalog will fail.

3. message stream - (this stream is consumed on stdin--it is not passed as an
arg). It will receive a stream of JSON-serialized AirbyteMesssage.

Output:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

1. message stream - A stream of AirbyteStateMessages piped to stdout. The
destination connector should only output state messages if they were previously
received as input on stdin. Outputting a state message indicates that all records
which came before it have been successfully written to the destination.
Implementations of this spec will likely want to move messages filtering and
validation upstream of the destination itself

● The destination should read in the AirbyteMessages and write any that are of
type AirbyteRecordMessage to the underlying data store.

● The destination should ignore fields or streams that are out of sync with the
catalog. The destination should always make its best effort to load what data is
there that does match that catalog. e.g. if the User Stream has the fields
first_name and last_name in the catalog, but the record has first_name and
eye_color, the destination should persist first_name, even though last_name is
missing. It should ignore eye_color as extraneous.

This concludes the overview of the Actor Interface. The remaining content will dive
deeper into each concept covered so far.

Actor Specification
The specification allows the Actor to share information about itself.

The connectionSpecification is JSONSchema that describes what information
needs to the actor for it operate. e.g. If using a Postgres Source, the
ConnectorSpecification would specify that a hostname, port, and password
are required in order for the connector to function. This JSONSchema can be used to
validate that the provided inputs are valid. e.g. If port is one of the fields and the
JsonSchema in the connectionSpecification specifies that this field should be a
number, if a user inputs "airbyte", they will receive an error. For connection specification,
Airbyte adheres to JsonSchema validation rules. The Airbyte implementation of the
Protocol is able to render this JSONSchema to produce a form for users to fill in the
information for an Actor.

The specification also contains information about what features the Actor supports.

● protocol_version describes which version of the protocol the Connector
supports. The default value is "0.2.0".

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://json-schema.org/

Unset

● supported_destination_sync_modes - describes which sync modes a
destination is able to support. See Sync Modes.

documentationUrl and changelogUrl are optional fields that link to additional
information about the connector.

The following are fields that still exist in the specification but are slated to be removed
as they leak choices about how Airbyte implements the protocol as opposed to being
strictly necessary part of the protocol.

● supportsIncremental is deprecated and can be ignored. It is vestigial from
when full refresh / incremental was specified at the Actor level.

● supportsNormalization determines whether the Destination supports Basic
Normalization

● supportsDBT - determines whether the Destination supports Basic
Normalization

● authSpecification and advanced_auth will be removed from the protocol
and as such are not documented. Information on their use can be found here.

ConnectorSpecification:

description: Specification of a connector
(source/destination)

type: object

required:

- connectionSpecification

additionalProperties: true

properties:

General Properties (Common to all connectors)

protocol_version:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

description: "the Airbyte Protocol version supported
by the connector. Protocol versioning uses SemVer."

type: string

documentationUrl:

type: string

format: uri

changelogUrl:

type: string

format: uri

connectionSpecification:

description: ConnectorDefinition specific blob. Must
be a valid JSON string.

type: object

existingJavaType:
com.fasterxml.jackson.databind.JsonNode

Connector Type Properties (Common to all connectors from
same type)

Source Connectors Properties

supportsIncremental:

description: (deprecated) If the connector supports
incremental mode or not.

type: boolean

Destination Connectors Properties

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Normalization is currently implemented using dbt, so it
requires `supportsDBT` to be true for this to be true.

supportsNormalization:

description: If the connector supports normalization
or not.

type: boolean

default: false

supportsDBT:

description: If the connector supports DBT or not.

type: boolean

default: false

supported_destination_sync_modes:

description: List of destination sync modes supported
by the connector

type: array

items:

"$ref": "#/definitions/DestinationSyncMode"

Catalog

Overview

An AirbyteCatalog is a struct that is produced by the discover action of a source.
It is a list of AirbyteStreams. Each AirbyteStream describes the data available to
be synced from the source. After a source produces an AirbyteCatalog or
AirbyteStream, they should be treated as read only. A

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

ConfiguredAirbyteCatalog is a list of ConfiguredAirbyteStreams. Each
ConfiguredAirbyteStream describes how to sync an AirbyteStream.

Each AirbyteStream of these contain a name and json_schema field. The
json_schema field accepts any valid JsonSchema and describes the structure of a
stream. This data model is intentionally flexible. That can make it a little hard at first to
mentally map onto your own data, so we provide some examples below: If we are using
a data source that is a traditional relational database, each table in that database would
map to an AirbyteStream. Each column in the table would be a key in the
properties field of the json_schema field. e.g. If we have a table called users which
had the columns name and age (the age column is optional) the AirbyteCatalog
would look like this:

{

"streams": [

{

"name": "users",

"json_schema": {

"type": "object",

"required": ["name"],

"properties": {

"name": {

"type": "string"

},

"age": {

"type": "number"

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

}

}

}

}

]

}

If we are using a data source that wraps an API with multiple different resources (e.g.
api/customers and api/products) each route would correspond to a stream. The
JSON object returned by each route would be described in the json_schema field.

e.g. In the case where the API has two endpoints api/customers and
api/products and each returns a list of JSON objects, the AirbyteCatalog might
look like this. (Note: using the JSON schema standard for defining a stream allows us to
describe nested objects. We are not constrained to a classic "table/columns" structure)

{

"streams": [

{

"name": "customers",

"json_schema": {

"type": "object",

"required": ["name"],

"properties": {

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"name": {

"type": "string"

}

}

}

},

{

"name": "products",

"json_schema": {

"type": "object",

"required": ["name", "features"],

"properties": {

"name": {

"type": "string"

},

"features": {

"type": "array",

"items": {

"type": "object",

"required": ["name", "productId"],

"properties": {

"name": { "type": "string" },

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"productId": { "type": "number" }

}

}

}

}

}

}

]

}

Note: Stream and field names can be any UTF8 string. Destinations are responsible for
cleaning these names to make them valid table and column names in their respective
data stores.

Namespace

Technical systems often group their underlying data into namespaces with each
namespace's data isolated from another namespace. This isolation allows for better
organisation and flexibility, leading to better usability.

An example of a namespace is the RDBMS's schema concept. An API namespace
might be used for multiple accounts (e.g. company_a vs company_b, each having a
"users" and "purchases" stream). Some common use cases for schemas are enforcing
permissions, segregating test and production data and general data organization.

The AirbyteStream represents this concept through an optional field called
namespace. Additional documentation on Namespaces can be found here.

Cursor

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● The cursor is how sources track which records are new or updated since the last
sync.

● A "cursor field" is the field that is used as a comparable for making this
determination.

○ If a configuration requires a cursor field, it requires an array of strings that
serves as a path to the desired field. e.g. if the structure of a stream is {
value: 2, metadata: { updated_at: 2020-11-01 } } the
default_cursor_field might be ["metadata", "updated_at"].

AirbyteStream

This section will document the meaning of each field in an AirbyteStream

● json_schema - This field contains a JsonSchema representation of the schema
of the stream.

● supported_sync_modes - The sync modes that the stream supports. By
default, all sources support FULL_REFRESH. Even if this array is empty, it can be
assumed that a source supports FULL_REFRESH. The allowed sync modes are
FULL_REFRESH and INCREMENTAL.

● source_defined_cursor - If a source supports the INCREMENTAL sync
mode, and it sets this field to true, it is responsible for determining internally how
it tracks which records in a source are new or updated since the last sync. When
set to true, default_cursor_field should also be set.

● default_cursor_field - If a source supports the INCREMENTAL sync mode,
it may, optionally, set this field. If this field is set, and the user does not override it
with the cursor_field attribute in the ConfiguredAirbyteStream
(described below), this field will be used as the cursor. It is an array of keys to a
field in the schema.

Data Types

Airbyte maintains a set of types that intersects with those of JSONSchema but also
includes its own. More information on supported data types can be found in Supported
Data Types.

ConfiguredAirbyteStream

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://json-schema.org/understanding-json-schema

Unset

This section will document the meaning of each field in an
ConfiguredAirbyteStream

ConfiguredAirbyteStream:

type: object

additionalProperties: true

required:

- stream

- sync_mode

- destination_sync_mode

properties:

stream:

"$ref": "#/definitions/AirbyteStream"

sync_mode:

"$ref": "#/definitions/SyncMode"

default: full_refresh

cursor_field:

description: Path to the field that will be used to
determine if a record is new or modified since the last
sync. This field is REQUIRED if `sync_mode` is
`incremental`. Otherwise it is ignored.

type: array

items:

type: string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

destination_sync_mode:

"$ref": "#/definitions/DestinationSyncMode"

default: append

primary_key:

description: Paths to the fields that will be used as
primary key. This field is REQUIRED if
`destination_sync_mode` is `*_dedup`. Otherwise it is
ignored.

type: array

items:

type: array

items:

type: string

SyncMode:

type: string

enum:

- full_refresh

- incremental

DestinationSyncMode:

type: string

enum:

- append

- overwrite

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

- append_dedup # SCD Type 1 & 2

● stream - This field contains the AirbyteStream that it is configured.
● sync_mode - The sync mode that will be used to by the source to sync that

stream. The value in this field MUST be present in the
supported_sync_modes array for the discovered AirbyteStream of this
stream.

● cursor_field - This field is an array of keys to a field in the schema that in the
INCREMENTAL sync mode will be used to determine if a record is new or updated
since the last sync.

○ If an AirbyteStream has source_defined_cursor set to true, then
the cursor_field attribute in ConfiguredAirbyteStream will be
ignored.

○ If an AirbyteStream defines a default_cursor_field, then the
cursor_field attribute in ConfiguredAirbyteStream is not
required, but if it is set, it will override the default value.

○ If an AirbyteStream does not define a cursor_field or a
default_cursor_field, then ConfiguredAirbyteStream must
define a cursor_field.

● destination_sync_mode - The sync mode that will be used the destination to
sync that stream. The value in this field MUST be present in the
supported_destination_sync_modes array in the specification for the
Destination.

Source Sync Modes

● incremental - send all the data for the Stream since the last sync (e.g. the
state message passed to the Source). This is the most common sync mode. It
only sends new data.

● full_refresh - resend all data for the Stream on every sync. Ignores State.
Should only be used in cases where data is very small, there is no way to keep a
cursor into the data, or it is necessary to capture a snapshot in time of the whole
dataset. Be careful using this, because misuse can lead to sending much more
data than expected.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Destination Sync Modes

● append - add new data from the sync to the end of whatever already data
already exists.

● append_dedup - add new data from the sync to the end of whatever already
data already exists and deduplicate it on primary key. This is the most common
sync mode. It does require that a primary exists in the data. This is also known
as SCD Type 1 & 2.

● overwrite - replace whatever data exists in the destination data store with the
data that arrives in this sync.

Logic for resolving the Cursor Field

This section lays out how a cursor field is determined in the case of a Stream that is
doing an incremental sync.

● If source_defined_cursor in AirbyteStream is true, then the source
determines the cursor field internally. It cannot be overridden. If it is false,
continue...

● If cursor_field in ConfiguredAirbyteStream is set, then the source uses
that field as the cursor. If it is not set, continue...

● If default_cursor_field in AirbyteStream is set, then the sources use
that field as the cursor. If it is not set, continue...

● Illegal - If source_defined_cursor, cursor_field, and
default_cursor_field are all false-y, this is an invalid configuration.

Schema Mismatches

Over time, it is possible for the catalog to become out of sync with the underlying data
store it represents. The Protocol is design to be resilient to this. In should never fail due
to a mismatch.

Scenario Outcome

Stream exists in
catalog but not in
data store

When the source runs, it will not find the data for that stream.
All other streams sync as usual.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Stream exists in data
store but not in
catalog

When the source runs, it never looks for the data in the store
related to that stream and thus does not emit it.

Field exists in catalog
but not in data store

If the column for a table is remove in the underlying data store
the Source will not find it and will not replicate it. It should not
cause a failure. The data simply will not be there.

Field exists in data
store but not in
catalog

When the source runs, it never looks for the field in the store.
It should not emit that field. If it does, it should be ignored
downstream. The existence of an unknown field should not
cause a failure.

In short, if the catalog is ever out of sync with the schema of the underlying data store, it
should never block replication for data that is present.

State & Checkpointing
Sources are able to emit state in order to allow checkpointing data replication. The goal
is that given wherever a sync stops (whether this is due to all data available at the time
being replicated or due to a failure), the next time the Source attempts to extract data it
can pick up where it left off and not have to go back to the beginning.

This concept enables incremental syncs--syncs that only replicate data that is new since
the previous sync.

State also enables Partial Success. In the case where during a sync there is a failure
before all data has been extracted and committed, if all records up to a certain state are
committed, then the next time the sync happens, it can start from that state as opposed
to going back to the beginning. Partial Success is powerful, because especially in the
case of high data volumes and long syncs, being able to pick up from wherever the
failure occurred can costly re-syncing of data that has already been replicated.

State & Source

This section will step through how state is used to allow a Source to pick up where it left
off. A Source takes state as an input. A Source should be able to take that input and
use it to determine where it left off the last time. The contents of the Source is a black
box to the Protocol. The Protocol provides an envelope for the Source to put its state in

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

and then passes the state back in that envelope. The Protocol never needs to know
anything about the contents of the state. Thus, the Source can track state however
makes most sense to it.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Here is an example of the lifecycle of state in reference to the Source.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

-- link to source image

In Sync 1, the Postgres Source receives null state as an input. Thus, when it queries
data from the database, it starts at the beginning and returns all the records it finds. In
addition, it emits state records that show track the high watermark of what records it has
replicated. The Source has broad latitude to decide how frequently it will emit state
records. In this implementation it emits a state message for each new day of the
created_at it processes.

In Sync 2, the last state that was emitted from Sync 1 is passed into the Source. When
the Source queries the data, it knows that it has already replicated records from
2022/01/02 and before, so it does not resend them. It just emits records after that date.

While this example, demonstrates a success case, we can see how this process helps
in failure cases as well. Let's say that in Sync 1 after emitting the first state message
and before emitting the record for Carl, the Source lost connectivity with Postgres due to
a network blip and the Source Actor crashed. When Sync 2 runs, it will get the state
record with 2022/01/01 instead, so it will replicate Carl and Drew, but it skips Alice and
Bob. While in this toy example this procedure only saves replicating one record, in a
production use case, being able to checkpoint regularly can save having to resend huge
amounts of data due to transient issues.

State & the Whole Sync

The previous section, for the sake of clarity, looked exclusively at the life cycle of state
relative to the Source. In reality knowing that a record was emitted from the Source is
NOT enough guarantee to know that we can skip sending the record in future syncs.
For example, imagine the Source successfully emits the record, but the Destination
fails. If we skip that record in the next sync, it means it never truly made it to its
destination. This insight means, that a State should only ever be passed to a Source in
the next run if it was both emitted from the Source and the Destination.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://whimsical.com/state-ESb6dLBnBYKLSJR2a7iMxi

This image looks at two time points during an example sync. At T1 the Source has
emitted 3 records and 2 state messages. If the Sync were to fail now, the next sync
should start at the beginning because no records have been saved to the destination.

At T2, the Destination has received all records before the first state message and has
emitted that that state message. By emitting that state message, the destination is
confirming that all records in that state message have been committed. The diagram
only shows the state being emitted because the destination does not emit record
messages, only state messages. In addition, the Source has also emitted more records,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

including the record for Drew and another state message. If the sync were to fail at T2,
then the next sync could start replicating records after Bob. Because the state records
for Carl and Drew did not make it through to the destination, despite being emitted by
the source, they have to be resent.

The normal success case (T3, not depicted) would be that all the records would move
through the destination and the last state message that the Source emitted is then
emitted by the Destination. The Source and Destination would both close STDOUT and
exit 0 signal that they have emitted all records without failure.

-- link to source image

V1

The state for an actor is emitted as a complete black box. When emitted it is wrapped in
the AirbyteStateMessage. The contents of the data field is what is passed to the
Source on start up. This gives the Source lead to decide how to track the state of each
stream. That being said, a common pattern is a Map<StreamDescriptor,
StreamStateBlob>. Nothing outside the source can make any inference about the
state of the object EXCEPT, if it is null, it can be concluded that there is no state and the
Source will start at the beginning.

V2 (coming soon!)

In addition to allowing a Source to checkpoint data replication, the state object is
structure to allow for the ability to configure and reset streams in isolation from each
other. For example, if adding or removing a stream, it is possible to do so without
affecting the state of any other stream in the Source.

There are 3 types of state: Stream, Global, and Legacy.

● Stream represents Sources where there is complete isolation between stream
states. In these cases, the state for each stream will be emitted in its own state
message. In other words, if there are 3 streams replicated during a sync, the
Source would emit at least 3 state message (1 per stream). The state of the
Source is the sum of all the stream states.

● Global represents Sources where this shared state across streams. In these
cases each state message contains the whole state for the connection. The
shared_state field is where any information that is shared across streams
must go. The stream_states field contains a list of objects that contain a

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://whimsical.com/state-TYX5bSCVtVF4BU1JbUwfpZ

Stream Descriptor and the state information for that stream that is
stream-specific. There are drawbacks to this state type, so it should only be used
in cases where a shared state between streams is unavoidable.

● Legacy exists for backwards compatibility. In this state type, the state object is
totally a black box. The only inference tha can be drawn from the state object is
that if it is null, then there is no state for the entire Source. All current legacy
cases can be ported to stream or global. Once they are, it will be removed.

This table breaks down attributes of these state types.

Stream Global Legacy

Stream-Level Configuration / Reset X X

Stream-Level Replication Isolation X

Single state message describes full state for
Source

X X

● Protocol Version simply connotes which versions of the Protocol have support for
these State types. The new state message is backwards compatible with the V1
message. This allows old versions of connectors and platforms to interact with
the new message.

● Stream-Level Configuration / Reset was mentioned above. The drawback of the
old state struct was that it was not possible to configure or reset the state for a
single stream without doing it for all of them. Thus, new state types support this,
but the legacy one cannot.

● Stream-Level Replication Isolation means that a Source could be run in parallel
by splitting up its streams across running instances. This is only possible for
Stream state types, because they are the only state type that can update its
current state completely on a per-stream basis. This is one of the main
drawbacks of Sources that use Global state; it is not possible to increase their
throughput through parallelization.

● Single state message describes full state for Source means that any state
message contains the full state information for a Source. Stream does not meet
this condition because each state message is scoped by stream. This means that
in order to build a full picture of the state for the Source, the state messages for
each configured stream must be gathered.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Messages

Common

For forwards compatibility all messages should allow for unknown properties (in
JSONSchema parlance that is additionalProperties: true).

Messages are structs emitted by actors.

StreamDescriptor

A stream descriptor contains all information required to identify a Stream:

● The name of the stream (required). It may not be null.
● The namespace of the stream (optional). It may be null if the stream does not

have an associated namespace, otherwise must be populated.
● Any UTF-8 string value is valid for both name and namespace, including the

empty string ("") value.

This is the new pattern for referring to a stream. As structs are updated, they are moved
ot use this pattern. Structs that have not been updated still refer to streams by having
top-level fields called stream_name and namespace.

StreamDescriptor:

type: object

additionalProperties: true

required:

- name

properties:

name:

type: string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

namespace:

type: string

AirbyteMessage

The output of each method in the actor interface is wrapped in an AirbyteMessage.
This struct is an envelope for the return value of any message in the described
interface.

The envelope has a required type which described the type of the wrapped message.
Based on the type only the field of that type will be populated. All other fields will be null.

AirbyteMessage:

type: object

additionalProperties: true

required:

- type

properties:

type:

description: "Message type"

type: string

enum:

- RECORD

- STATE

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

- LOG

- SPEC

- CONNECTION_STATUS

- CATALOG

- TRACE

log:

description: "log message: any kind of logging you
want the platform to know about."

"$ref": "#/definitions/AirbyteLogMessage"

spec:

"$ref": "#/definitions/ConnectorSpecification"

connectionStatus:

"$ref": "#/definitions/AirbyteConnectionStatus"

catalog:

description: "catalog message: the catalog"

"$ref": "#/definitions/AirbyteCatalog"

record:

description: "record message: the record"

"$ref": "#/definitions/AirbyteRecordMessage"

state:

description: "schema message: the state. Must be the
last message produced. The platform uses this information"

"$ref": "#/definitions/AirbyteStateMessage"

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

trace:

description: "trace message: a message to communicate
information about the status and performance of a
connector"

"$ref": "#/definitions/AirbyteTraceMessage"

AirbyteRecordMessage

The record message contains the actual data that is being replicated.

The namespace and stream fields are used to identify which stream the data is
associated with. namespace can be null if the stream does not have an associated
namespace. If it does, it must be populated.

The data contains the record data and must always be populated. It is a JSON blob.

The emitted_at field contains when the source extracted the record. It is a required
field.

AirbyteRecordMessage:

type: object

additionalProperties: true

required:

- stream

- data

- emitted_at

properties:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

namespace:

description: "namespace the data is associated with"

type: string

stream:

description: "stream the data is associated with"

type: string

data:

description: "record data"

type: object

existingJavaType:
com.fasterxml.jackson.databind.JsonNode

emitted_at:

description: "when the data was emitted from the
source. epoch in millisecond."

type: integer

AirbyteStateMessage (V1)

The state message enables the Source to emit checkpoints while replicating data.
These checkpoints mean that if replication fails before completion, the next sync is able
to start from the last checkpoint instead of returning to the beginning of the previous
sync. The details of this process are described in State & Checkpointing.

The state message is a wrapper around the state that a Source emits. The state that the
Source emits is treated as a black box by the protocol--it is modeled as a JSON blob.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

AirbyteStateMessage:

type: object

additionalProperties: true

required:

- data

properties:

data:

description: "the state data"

type: object

existingJavaType:
com.fasterxml.jackson.databind.JsonNode

AirbyteStateMessage (V2 -- coming soon!)

The state message enables the Source to emit checkpoints while replicating data.
These checkpoints mean that if replication fails before completion, the next sync is able
to start from the last checkpoint instead of returning to the beginning of the previous
sync. The details of this process are described in State & Checkpointing.

In the previous version of the protocol, the state object that the Source emitted was
treated entirely as a black box. In the current version of protocol, Sources split up state
by Stream. Within each Stream, the state is treated like a black box. The current version
of the protocol is backwards compatible to the previous state message. The previous
version is referred to as type LEGACY (if type is not set, it is assumed that the state
message is LEGACY).

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

state_type is a required field. Only the field associated with that type we be
populated. All others will be null. If the type is LEGACY and data is null, that means the
state should be reset.

STREAM is the common way of constructing states and should be preferred wherever
possible. In the STREAM case, the state for each stream is emitted in a separate
message. This is described by the AirbyteStreamState struct. The
stream_descriptor field is required to determine which stream a state is associated
with. stream_state contains the black box state for a stream. If it is null, it means that
the state for that stream should be reset.

In the GLOBAL case, the state for the whole Source is encapsulated in the message
(see: AirbyteGlobalState). Within that message the state for individual streams is
split. The GLOBAL case allows the author of a Source to share state across streams
(shared_state). The contract is that if the state of the stream is set to null in
stream_states then the next time the Source runs, it should treat that state as reset.
This message should only be used in cases where there is a shared state across
streams (e.g. CDC where the WAL log number is a global cursor), otherwise prefer
STREAM.

AirbyteStateMessage:

type: object

additionalProperties: true

properties:

state_type:

"$ref": "#/definitions/AirbyteStateType"

stream:

"$ref": "#/definitions/AirbyteStreamState"

global:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"$ref": "#/definitions/AirbyteGlobalState"

data:

description: "(Deprecated) the state data"

type: object

existingJavaType:
com.fasterxml.jackson.databind.JsonNode

AirbyteStateType:

type: string

description: >

The type of state the other fields represent.

Is set to LEGACY, the state data should be read from the
`data` field for backwards compatibility.

If not set, assume the state object is type LEGACY.

GLOBAL means that the state should be read from `global`
and means that it represents the state for all the streams.
It contains one shared

state and individual stream states.

PER_STREAM means that the state should be read from
`stream`. The state present in this field correspond to the
isolated state of the

associated stream description.

enum:

- GLOBAL

- STREAM

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

- LEGACY

AirbyteStreamState:

type: object

additionalProperties: true

required:

- stream_descriptor

properties:

stream_descriptor:

"$ref": "#/definitions/StreamDescriptor"

stream_state:

"$ref": "#/definitions/AirbyteStateBlob"

AirbyteGlobalState:

type: object

additionalProperties: true

required:

- stream_states

properties:

shared_state:

"$ref": "#/definitions/AirbyteStateBlob"

stream_states:

type: array

items:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

"$ref": "#/definitions/AirbyteStreamState"

AirbyteConnectionStatus Message

This message reports whether an Actor was able to connect to its underlying data store
with all the permissions it needs to succeed. The goal is that if a successful stat is
returned, that the user should be confident that using that Actor will succeed. The depth
of the verification is not specified in the protocol. More robust verification is preferred but
going to deep can create undesired performance tradeoffs

AirbyteConnectionStatus:

description: Airbyte connection status

type: object

additionalProperties: true

required:

- status

properties:

status:

type: string

enum:

- SUCCEEDED

- FAILED

message:

type: string

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

ConnectorSpecification Message

This message returns the ConnectorSpecification struct which is described in
detail in Actor Specification

AirbyteCatalog Message

This message returns the AirbyteCatalog struct which is described in detail in
Catalog

AirbyteLogMessage

Logs are helping for debugging an Actor. In order for a log emitted from an Actor be
properly parsed it should be emitted as an AirbyteLogMessage wrapped in an
AirbyteMessage.

The Airbyte implementation of the protocol does attempt to parse any data emitted from
an Actor as a log, even if it is not properly wrapped in an AirbyteLogMessage. It
attempts to treat any returned line that is not JSON or that is JSON but is not an
AirbyteMessage as a log. This an implementation choice outside the boundaries of
the strict protocol. The downside of this approach is that metadata about the log that
would be captured in the AirbyteLogMessage is lost.

AirbyteLogMessage:

type: object

additionalProperties: true

required:

- level

- message

properties:

level:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

description: "log level"

type: string

enum:

- FATAL

- ERROR

- WARN

- INFO

- DEBUG

- TRACE

message:

description: "log message"

type: string

stack_trace:

description: "an optional stack trace if the log
message corresponds to an exception"

type: string

AirbyteTraceMessage

The trace message allows an Actor to emit metadata about the runtime of the Actor,
such as errors or estimates. This message is designed to grow to handle other use
cases, including additonal performance metrics.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

AirbyteTraceMessage:

type: object

additionalProperties: true

required:

- type

- emitted_at

properties:

type:

title: "trace type" # this title is required to avoid
python codegen conflicts with the "type" parameter in
AirbyteMessage. See
https://github.com/airbytehq/airbyte/pull/12581

description: "the type of trace message"

type: string

enum:

- ERROR

- ESTIMATE

emitted_at:

description: "the time in ms that the message was
emitted"

type: number

error:

description: "error trace message: the error object"

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"$ref": "#/definitions/AirbyteErrorTraceMessage"

estimate:

description: "Estimate trace message: a guess at how
much data will be produced in this sync"

"$ref": "#/definitions/AirbyteEstimateTraceMessage"

AirbyteErrorTraceMessage:

type: object

additionalProperties: true

required:

- message

properties:

message:

description: A user-friendly message that indicates
the cause of the error

type: string

internal_message:

description: The internal error that caused the
failure

type: string

stack_trace:

description: The full stack trace of the error

type: string

failure_type:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

description: The type of error

type: string

enum:

- system_error

- config_error

AirbyteEstimateTraceMessage:

type: object

additionalProperties: true

required:

- name

- type

properties:

name:

description: The name of the stream

type: string

type:

description: The type of estimate

type: string

enum:

- STREAM

- SYNC

namespace:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

description: The namespace of the stream

type: string

row_estimate:

description: The estimated number of rows to be
emitted by this sync for this stream

type: integer

byte_estimate:

description: The estimated number of bytes to be
emitted by this sync for this stream

type: integer

AirbyteErrorTraceMessage

Error Trace Messages are used when a sync is about to fail and the connector can
provide meaningful information to the orhcestrator or user about what to do next.

Of note, an internal_message might be an exception code, but an
external_message is meant to be user-facing, e.g. "Your API Key is invalid".

Syncs can fail for multiple reasons, and therefore multiple
AirbyteErrorTraceMessage can be sent from a connector.

AirbyteEstimateTraceMessage

Estimate Trace Messages are used by connectors to inform the orchestrator about how
much data they expect to move within the sync. This ise useful to present the user with
estimates of the time remaining in the sync, or percentage complete. An example of this
would be for every stream about to be synced from a databse to provde a COUNT (*)
from {table_name} where updated_at > {state} to provide an estimate of
the rows to be sent in this sync.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

AirbyteEstimateTraceMessage should be emitted early in the sync to provide an
early estimate of the sync's duration. Multiple AirbyteEstimateTraceMessages can
be sent for the same stream, and an updated estimate will replace the previous value.

AirbyteControlMessage

An AirbyteControlMessage is for connectors to signal to the Airbyte Platform or
Orchestrator that an action with a side-effect should be taken. This means that the
Orchestrator will likely be altering some stored data about the connector, connection, or
sync.

AirbyteControlMessage:

type: object

additionalProperties: true

required:

- type

- emitted_at

properties:

type:

title: orchestrator type

description: "the type of orchestrator message"

type: string

enum:

- CONNECTOR_CONFIG

emitted_at:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

description: "the time in ms that the message was
emitted"

type: number

connectorConfig:

description: "connector config orchestrator message:
the updated config for the platform to store for this
connector"

"$ref":
"#/definitions/AirbyteControlConnectorConfigMessage"

AirbyteControlConnectorConfigMessage

AirbyteControlConnectorConfigMessage allows a connector to update its
configuration in the middle of a sync. This is valuable for connectors with short-lived or
single-use credentials.

Emitting this message signals to the orchestrator process that it should update its
persistence layer, replacing the connector's current configuration with the config present
in the .config field of the message.

The config in the AirbyteControlConnectorConfigMessage must conform to
connector's specification's schema, and the orchestrator process is expected to validate
these messages. If the output config does not conform to the specification's schema,
the orchestrator process should raise an exception and terminate the sync.

AirbyteControlConnectorConfigMessage:

type: object

additionalProperties: true

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

required:

- config

properties:

config:

description: "the config items from this connector's
spec to update"

type: object

additionalProperties: true

For example, if the currently persisted config file is {"api_key": 123,
start_date: "01-01-2022"} and the following
AirbyteControlConnectorConfigMessage is output {type: ORCHESTRATOR,
connectorConfig: {"config": {"api_key": 456}, "emitted_at":
<current_time>}} then the persisted configuration is merged, and will become
{"api_key": 456, start_date: "01-01-2022"}.

Acknowledgements
We'd like to note that we were initially inspired by Singer.io's specification and would like
to acknowledge that some of their design choices helped us bootstrap our project.
We've since made a lot of modernizations to our protocol and specification, but don't
want to forget the tools that helped us get started.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/singer-io/getting-started/blob/master/docs/SPEC.md#singer-specification

Namespaces

High-Level Overview
INFO

The high-level overview contains all the information you need to use Namespaces when
pulling from APIs. Information past that can be read for advanced or educational
purposes.

When looking through our connector docs, you'll notice that some sources and
destinations support "Namespaces." These allow you to organize and separate your
data into groups in the destination if the destination supports it. In most cases,
namespaces are schemas in the database you're replicating to. If your desired
destination doesn't support it, you can ignore this feature.

Note that this is the location that both your normalized and raw data will get written to.
Your raw data will show up with the prefix _airbyte_raw_ in the namespace you
define. If you don't enable basic normalization, you will only receive the raw tables.

If only your destination supports namespaces, you have two simple options. This is the
most likely case, as all HTTP APIs currently don't support Namespaces.

1. Mirror Destination Settings - Replicate to the default namespace in the
destination, which will differ based on your destination.

2. Custom Format - Create a "Custom Format" to rename the namespace that your
data will be replicated into.

If both your desired source and destination support namespaces, you're likely using a
more advanced use case with a database as a source, so continue reading.

What is a Namespace?
Technical systems often group their underlying data into namespaces with each
namespace's data isolated from another namespace. This isolation allows for better
organisation and flexibility, leading to better usability.

An example of a namespace is the RDMS's schema concept. Some common use cases
for schemas are enforcing permissions, segregating test and production data and
general data organisation.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Syncing
The Airbyte Protocol supports namespaces and allows Sources to define namespaces,
and Destinations to write to various namespaces.

If the Source does not support namespaces, the data will be replicated into the
Destination's default namespace. For databases, the default namespace is the schema
provided in the destination configuration.

If the Destination does not support namespaces, the namespace field is ignored.

Destination namespace configuration
As part of the connections sync settings, it is possible to configure the namespace used
by: 1. destination connectors: to store the _airbyte_raw_* tables. 2. basic
normalization: to store the final normalized tables.

Note that custom transformation outputs are not affected by the namespace settings
from Airbyte: It is up to the configuration of the custom dbt project, and how it is written
to handle its custom schemas. The default target schema for dbt in this case, will
always be the destination namespace.

Available options for namespace configurations are:

- Mirror source structure

Some sources (such as databases based on JDBC for example) are providing
namespace information from which a stream has been extracted. Whenever a source is
able to fill this field in the catalog.json file, the destination will try to reproduce exactly
the same namespace when this configuration is set. For sources or streams where the
source namespace is not known, the behavior will fall back to the "Destination
Connector settings".

- Destination connector settings

All stream will be replicated and store in the default namespace defined on the
destination settings page. In the destinations, namespace refers to:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/blob/master/airbyte-protocol/models/src/main/resources/airbyte_protocol/airbyte_protocol.yaml#L64
https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas

Destination
Connector

Namespace
setting

BigQuery
dataset

MSSQL schema

MySql database

Oracle DB schema

Postgres schema

Redshift schema

Snowflake schema

S3 path prefix

- Custom format

When replicating multiple sources into the same destination, conflicts on tables being
overwritten by syncs can occur.

For example, a Github source can be replicated into a "github" schema. But if we have
multiple connections to different GitHub repositories (similar in multi-tenant scenarios):

● we'd probably wish to keep the same table names (to keep consistent queries
downstream)

● but store them in different namespaces (to avoid mixing data from different
"tenants")

To solve this, we can either:

● use a specific namespace for each connection, thus this option of custom format.
● or, use prefix to stream names as described below.

Note that we can use a template format string using variables that will be resolved
during replication as follow:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

● ${SOURCE_NAMESPACE}: will be replaced by the namespace provided by the
source if available

Examples

The following table summarises how this works. We assume an example of replication
configurations between a Postgres Source and Snowflake Destination (with settings of
schema = "my_schema"):

Namespace Configuration Source
Names
pace

Source
Table
Name

Destination
Namespace

Destinat
ion

Table
Name

Mirror source structure
public my_table public my_table

Mirror source structure my_table my_schema my_table

Destination connector settings public my_table my_schema my_table

Destination connector settings my_table my_schema my_table

Custom format = "custom" public my_table custom my_table

Custom format =
"${SOURCE_NAMESPACE}"

public my_table public my_table

Custom format =
"my_${SOURCE_NAMESPACE
}_schema"

public my_table my_public_sch
ema

my_table

Custom format = " " public my_table my_schema my_table

Requirements
● Both Source and Destination connectors need to support namespaces.
● Relevant Source and Destination connectors need to be at least version 0.3.0

or later.
● Airbyte version 0.21.0-alpha or later.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Current Support

Sources

● MSSQL
● MYSQL
● Oracle DB
● Postgres
● Redshift

Destination

● BigQuery
● MSSQL
● MySql
● Oracle DB
● Postgres
● Redshift
● Snowflake
● S3

BigQuery (Destination)
Setting up the BigQuery destination connector involves setting up the data loading
method (BigQuery Standard method and Google Cloud Storage bucket) and configuring
the BigQuery destination connector using the Airbyte UI.

This page guides you through setting up the BigQuery destination connector.

Prerequisites
● For Airbyte Open Source users using the Postgres source connector, upgrade

your Airbyte platform to version v0.40.0-alpha or newer and upgrade your
BigQuery connector to version 1.1.14 or newer

● A Google Cloud project with BigQuery enabled

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/bigquery/docs/quickstarts/query-public-dataset-console

● A BigQuery dataset to sync data to.
Note: Queries written in BigQuery can only reference datasets in the same
physical location. If you plan on combining the data that Airbyte syncs with data
from other datasets in your queries, create the datasets in the same location on
Google Cloud. For more information, read Introduction to Datasets

● (Required for Airbyte Cloud; Optional for Airbyte Open Source) A Google Cloud
Service Account with the BigQuery User and BigQuery Data Editor roles
and the Service Account Key in JSON format.

Connector modes
While setting up the connector, you can configure it in the following modes:

● BigQuery: Produces a normalized output by storing the JSON blob data in
_airbyte_raw_* tables and then transforming and normalizing the data into
separate tables, potentially exploding nested streams into their own tables if
basic normalization is configured.

● BigQuery (Denormalized): Leverages BigQuery capabilities with Structured and
Repeated fields to produce a single "big" table per stream. Airbyte does not
support normalization for this option at this time.

Setup guide

Step 1: Set up a data loading method

Although you can load data using BigQuery's INSERTS, we highly recommend using a
Google Cloud Storage bucket not only for performance and cost but reliability since
larger datasets are prone to more failures when using standard inserts.

(Recommended) Using a Google Cloud Storage bucket

To use a Google Cloud Storage bucket:
1. Create a Cloud Storage bucket with the Protection Tools set to none or Object

versioning. Make sure the bucket does not have a retention policy.
2. Create an HMAC key and access ID.
3. Grant the Storage Object Admin role to the Google Cloud Service Account.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui#create_a_dataset
https://cloud.google.com/bigquery/docs/datasets-intro
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/bigquery/docs/access-control#bigquery
https://cloud.google.com/bigquery/docs/access-control#bigquery
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/bigquery/docs/reference/standard-sql/dml-syntax
https://cloud.google.com/storage/docs/introduction
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/storage/docs/samples/storage-set-retention-policy
https://cloud.google.com/storage/docs/authentication/managing-hmackeys#create
https://cloud.google.com/storage/docs/access-control/iam-roles#standard-roles
https://cloud.google.com/iam/docs/service-accounts

4. Make sure your Cloud Storage bucket is accessible from the machine running
Airbyte. The easiest way to verify if Airbyte is able to connect to your bucket is
via the check connection tool in the UI.

Your bucket must be encrypted using a Google-managed encryption key (this is the
default setting when creating a new bucket). We currently do not support buckets using
customer-managed encryption keys (CMEK). You can view this setting under the
"Configuration" tab of your GCS bucket, in the Encryption type row.

Using INSERT

You can use BigQuery's INSERT statement to upload data directly from your source to
BigQuery. While this is faster to set up initially, we strongly recommend not using this
option for anything other than a quick demo. Due to the Google BigQuery SDK client
limitations, using INSERT is 10x slower than using a Google Cloud Storage bucket, and
you may see some failures for big datasets and slow sources (For example, if reading
from a source takes more than 10-12 hours). For more details, refer to
https://github.com/airbytehq/airbyte/issues/3549

Step 2: Set up the BigQuery connector
1. Log into your Airbyte Cloud or Airbyte Open Source account.
2. Click Destinations and then click + New destination.
3. On the Set up the destination page, select BigQuery or BigQuery (denormalized

typed struct) from the Destination type dropdown depending on whether you
want to set up the connector in BigQuery or BigQuery (Denormalized) mode.

4. Enter the name for the BigQuery connector.
5. For Project ID, enter your Google Cloud project ID.
6. For Dataset Location, select the location of your BigQuery dataset.

DANGER
You cannot change the location later.

7. For Default Dataset ID, enter the BigQuery Dataset ID.
8. For Loading Method, select Standard Inserts or GCS Staging.

TIP
We recommend using the GCS Staging option.

9. For Service Account Key JSON (Required for cloud, optional for open-source),
enter the Google Cloud Service Account Key in JSON format.

10.For Transformation Query Run Type (Optional), select interactive to have
BigQuery run interactive query jobs or batch to have BigQuery run batch queries.
NOTE

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/bigquery/docs/reference/standard-sql/dml-syntax
https://github.com/airbytehq/airbyte/issues/3549
https://cloud.airbyte.com/workspaces
https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects
https://cloud.google.com/bigquery/docs/datasets#create-dataset
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/bigquery/docs/running-queries#queries
https://cloud.google.com/bigquery/docs/running-queries#batch

Interactive queries are executed as soon as possible and count towards daily
concurrent quotas and limits, while batch queries are executed as soon as idle
resources are available in the BigQuery shared resource pool. If BigQuery hasn't
started the query within 24 hours, BigQuery changes the job priority to
interactive. Batch queries don't count towards your concurrent rate limit, making it
easier to start many queries at once.

11. For Google BigQuery Client Chunk Size (Optional), use the default value of 15
MiB. Later, if you see networking or memory management problems with the
sync (specifically on the destination), try decreasing the chunk size. In that case,
the sync will be slower but more likely to succeed.

Supported sync modes
The BigQuery destination connector supports the following sync modes:

● Full Refresh Sync
● Incremental - Append Sync
● Incremental - Deduped History

Output schema
Airbyte outputs each stream into its own table in BigQuery. Each table contains three
columns:

● _airbyte_ab_id: A UUID assigned by Airbyte to each event that is processed.
The column type in BigQuery is String.

● _airbyte_emitted_at: A timestamp representing when the event was pulled
from the data source. The column type in BigQuery is Timestamp.

● _airbyte_data: A JSON blob representing the event data. The column type in
BigQuery is String.

The output tables in BigQuery are partitioned and clustered by the Time-unit column
_airbyte_emitted_at at a daily granularity. Partitions boundaries are based on UTC
time. This is useful to limit the number of partitions scanned when querying these
partitioned tables, by using a predicate filter (a WHERE clause). Filters on the partitioning
column are used to prune the partitions and reduce the query cost. (The parameter
Require partition filter is not enabled by Airbyte, but you may toggle it by updating the
produced tables.)

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

BigQuery Naming Conventions
Follow BigQuery Datasets Naming conventions.

Airbyte converts any invalid characters into _ characters when writing data. However,
since datasets that begin with _ are hidden on the BigQuery Explorer panel, Airbyte
prepends the namespace with n for converted namespaces.

Data type map

Airbyte type BigQuery
type

BigQuery
denormalized type

DATE
DATE DATE

STRING (BASE64) STRING STRING

NUMBER FLOAT NUMBER

OBJECT STRING RECORD

STRING STRING STRING

BOOLEAN BOOLEAN BOOLEAN

INTEGER INTEGER INTEGER

STRING (BIG_NUMBER) STRING STRING

STRING (BIG_INTEGER) STRING STRING

ARRAY REPEATED REPEATED

STRING (TIMESTAMP_WITH_TIMEZONE) TIMESTAM
P

DATETIME

STRING
(TIMESTAMP_WITHOUT_TIMEZONE)

TIMESTAM
P

DATETIME

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://cloud.google.com/bigquery/docs/datasets#dataset-naming

Troubleshooting permission issues
The service account does not have the proper permissions.

● Make sure the BigQuery service account has BigQuery User and BigQuery
Data Editor roles or equivalent permissions as those two roles.

● If the GCS staging mode is selected, ensure the BigQuery service account has
the right permissions to the GCS bucket and path or the Cloud Storage
Admin role, which includes a superset of the required permissions.

The HMAC key is wrong.

● Make sure the HMAC key is created for the BigQuery service account, and the
service account has permission to access the GCS bucket and path.

Local CSV
DANGER

This destination is meant to be used on a local workstation and won't work on
Kubernetes

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Overview
This destination writes data to a directory on the local filesystem on the host running
Airbyte. By default, data is written to /tmp/airbyte_local. To change this location,
modify the LOCAL_ROOT environment variable for Airbyte.
CAUTION

Please make sure that Docker Desktop has access to /tmp (and /private on a
MacOS, as /tmp has a symlink that points to /private. It will not work otherwise). You
allow it with "File sharing" in Settings -> Resources -> File sharing ->
add the one or two above folder and hit the "Apply & restart" button.

Sync Overview

Output schema

Each stream will be output into its own file. Each file will contain 3 columns:

● _airbyte_ab_id: a uuid assigned by Airbyte to each event that is processed.
● _airbyte_emitted_at: a timestamp representing when the event was pulled

from the data source.
● _airbyte_data: a json blob representing with the event data.

Features

Feature Supported

Full Refresh Sync Yes

Incremental -
Append Sync

Yes

Incremental -
Deduped History

No As this connector does not support dbt, we
don't support this sync mode on this
destination.

Namespaces No

Performance considerations

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

This integration will be constrained by the speed at which your filesystem accepts
writes.

Getting Started

The destination_path will always start with /local whether it is specified by the
user or not. Any directory nesting within local will be mapped onto the local mount.

By default, the LOCAL_ROOT env variable in the .env file is set
/tmp/airbyte_local.

The local mount is mounted by Docker onto LOCAL_ROOT. This means the /local is
substituted by /tmp/airbyte_local by default.

Example:

● If destination_path is set to /local/cars/models
● the local mount is using the /tmp/airbyte_local default
● then all data will be written to /tmp/airbyte_local/cars/models directory.

Access Replicated Data Files
If your Airbyte instance is running on the same computer that you are navigating with,
you can open your browser and enter file:///tmp/airbyte_local to look at the replicated
data locally. If the first approach fails or if your Airbyte instance is running on a remote
server, follow the following steps to access the replicated files:

1. Access the scheduler container using docker exec -it airbyte-server
bash

2. Navigate to the default local mount using cd /tmp/airbyte_local
3. Navigate to the replicated file directory you specified when you created the

destination, using cd /{destination_path}
4. List files containing the replicated data using ls
5. Execute cat {filename} to display the data in a particular file

You can also copy the output file to your host machine, the following command will copy
the file to the current working directory you are using:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

docker cp
airbyte-server:/tmp/airbyte_local/{destination_path}/{filen
ame}.csv .

Note: If you are running Airbyte on Windows with Docker backed by WSL2, you have to
use a similar step as above or refer to this link for an alternative approach.

Windows - Browsing Local File Output

Overview
This tutorial will describe how to look for json and csv files in when using local
destinations on Windows on a local deployment.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

There can be confusion when using local destinations in Airbyte on Windows, especially
if you are running WSL2 to power Docker. There are also two folders generated at the
root folder of your Docker folder which will point you in the wrong direction.

Locating where your temp folder is
While running Airbyte's Docker image on Windows with WSL2, you can access your
temp folder by doing the following:

1. Open File Explorer (Or any folder where you can access the address bar)
2. Type in \\wsl$ in the address bar
3. The folders below will be displayed

4. You can start digging here, but it is recommended to start searching from here
and just search for the folder name you used for your local files. The folder
address should be similar to
\\wsl$\docker-desktop\tmp\docker-desktop-root\containers\se
rvices\docker\rootfs\tmp\airbyte_local

5. You should be able to locate your local destination CSV or JSON files in this
folder.

Note that there are scenarios where you may not be able to browse to the actual files in
which case, use the below method to take a local copy.

Use Docker to Copy your temp folder files
Note that this method does not allow direct access to any files directly, instead it creates
local, readable copies.

1. Open and standard CMD shell
2. Type the following (where <local path> is the path on your Windows host

machine to place copies) docker cp
airbyte-server:/tmp/airbyte_local <local path>

3. This will copy the entire airbyte_local folder to your host machine.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Note that if you know the specific filename or wildcard, you can add append it to the
source path of the docker cp command.

Notes
1. Local JSON and Local CSV files do not persist between Docker restarts. This

means that once you turn off your Docker image, your data is lost. This is
consistent with the tmp nature of the folder.

2. In the root folder of your docker files, it might generate tmp and var folders that
only have empty folders inside.

Transformations with SQL (Part 1/3)

Transformations with SQL (Part 1/3)

Overview

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

This tutorial will describe how to integrate SQL based transformations with Airbyte
syncs using plain SQL queries.

This is the first part of ELT tutorial. The second part goes deeper with Transformations
with dbt and then wrap-up with a third part on Transformations with Airbyte.

(Examples outputs are updated with Airbyte version
0.23.0-alpha from May 2021)

First transformation step: Normalization

At its core, Airbyte is geared to handle the EL (Extract Load) steps of an ELT process.
These steps can also be referred in Airbyte's dialect as "Source" and "Destination".

However, this is actually producing a table in the destination with a JSON blob column...
For the typical analytics use case, you probably want this json blob normalized so that
each field is its own column.

So, after EL, comes the T (transformation) and the first T step that Airbyte actually
applies on top of the extracted data is called "Normalization". You can find more
information about it here.

Airbyte runs this step before handing the final data over to other tools that will manage
further transformation down the line.

To summarize, we can represent the ELT process in the diagram below. These are
steps that happens between your "Source Database or API" and the final "Replicated
Tables" with examples of implementation underneath:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Anyway, it is possible to short-circuit this process (no vendor lock-in) and handle it
yourself by turning this option off in the destination settings page.

This could be useful if:
1. You have a use-case not related to analytics that could be handled with data in

its raw JSON format.
2. You can implement your own transformer. For example, you could write them in a

different language, create them in an analytics engine like Spark, or use a
transformation tool such as dbt or Dataform.

3. You want to customize and change how the data is normalized with your own
queries.

In order to do so, we will now describe how you can leverage the basic normalization
outputs that Airbyte generates to build your own transformations if you don't want to
start from scratch.

Note: We will rely on docker commands that we've gone over as part of another Tutorial
on Exploring Docker Volumes.

(Optional) Configure some Covid (data) source and Postgres destinations

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

If you have sources and destinations already setup on your deployment, you can skip to
the next section.

For the sake of this tutorial, let's create some source and destination as an example that
we can refer to afterward. We'll be using a file accessible from a public API, so you can
easily reproduce this setup:

Here are some examples of public API CSV:

https://storage.googleapis.com/covid19-open-data/v2/latest/
epidemiology.csv

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

And a local Postgres Database, making sure that "Basic normalization" is enabled:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

After setting up the connectors, we can trigger the sync and study the logs:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Notice that the process ran in the /tmp/workspace/5/0 folder.

Identify Workspace ID with Normalize steps

If you went through the previous setup of source/destination section and run a sync, you
were able to identify which workspace was used, let's define some environment
variables to remember this:

NORMALIZE_WORKSPACE="5/0/"

Or if you want to find any folder where the normalize step was run:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

find automatically latest workspace where normalization was
run

NORMALIZE_WORKSPACE=`docker run --rm -i -v
airbyte_workspace:/data busybox find /data -path
"*normalize/models*" | sed -E
"s;/data/([0-9]+/[0-9]+/)normalize/.*;\1;g" | sort | uniq |
tail -n 1`

Export Plain SQL files

Airbyte is internally using a specialized tool for handling transformations called dbt.

The Airbyte Python module reads the destination_catalog.json file and
generates dbt code responsible for interpreting and transforming the raw data.

The final output of dbt is producing SQL files that can be run on top of the destination
that you selected.

Therefore, it is possible to extract these SQL files, modify them and run it yourself
manually outside Airbyte!

You would be able to find these at the following location inside the server's docker
container:

/tmp/workspace/${NORMALIZE_WORKSPACE}/build/run/airbyte_uti
ls/models/generated/airbyte_tables/<schema>/<your_table_nam
e>.sql

In order to extract them, you can run:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Unset

Unset

#!/usr/bin/env bash

docker cp
airbyte-server:/tmp/workspace/${NORMALIZE_WORKSPACE}/build/
run/airbyte_utils/models/generated/ models/

find models

Example Output:

models/airbyte_tables/quarantine/covid_epidemiology_f11.sql

Let's inspect the generated SQL file by running:

cat models/**/covid_epidemiology*.sql

Example Output:

create table
"postgres".quarantine."covid_epidemiology_f11__dbt_tmp"

as (

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

with __dbt__CTE__covid_epidemiology_ab1_558 as (

-- SQL model to parse JSON blob stored in a single column and
extract into separated field columns as described by the JSON
Schema

select

jsonb_extract_path_text(_airbyte_data, 'key') as "key",

jsonb_extract_path_text(_airbyte_data, 'date') as
"date",

jsonb_extract_path_text(_airbyte_data, 'new_tested') as
new_tested,

jsonb_extract_path_text(_airbyte_data, 'new_deceased')
as new_deceased,

jsonb_extract_path_text(_airbyte_data, 'total_tested')
as total_tested,

jsonb_extract_path_text(_airbyte_data, 'new_confirmed')
as new_confirmed,

jsonb_extract_path_text(_airbyte_data, 'new_recovered')
as new_recovered,

jsonb_extract_path_text(_airbyte_data, 'total_deceased')
as total_deceased,

jsonb_extract_path_text(_airbyte_data,
'total_confirmed') as total_confirmed,

jsonb_extract_path_text(_airbyte_data,
'total_recovered') as total_recovered,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

_airbyte_emitted_at

from "postgres".quarantine._airbyte_raw_covid_epidemiology

-- covid_epidemiology

), __dbt__CTE__covid_epidemiology_ab2_558 as (

-- SQL model to cast each column to its adequate SQL type
converted from the JSON schema type

select

cast("key" as

varchar

) as "key",

cast("date" as

varchar

) as "date",

cast(new_tested as

float

) as new_tested,

cast(new_deceased as

float

) as new_deceased,

cast(total_tested as

float

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

) as total_tested,

cast(new_confirmed as

float

) as new_confirmed,

cast(new_recovered as

float

) as new_recovered,

cast(total_deceased as

float

) as total_deceased,

cast(total_confirmed as

float

) as total_confirmed,

cast(total_recovered as

float

) as total_recovered,

_airbyte_emitted_at

from __dbt__CTE__covid_epidemiology_ab1_558

-- covid_epidemiology

), __dbt__CTE__covid_epidemiology_ab3_558 as (

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

-- SQL model to build a hash column based on the values of
this record

select

*,

md5(cast(

coalesce(cast("key" as

varchar

), '') || '-' || coalesce(cast("date" as

varchar

), '') || '-' || coalesce(cast(new_tested as

varchar

), '') || '-' || coalesce(cast(new_deceased as

varchar

), '') || '-' || coalesce(cast(total_tested as

varchar

), '') || '-' || coalesce(cast(new_confirmed as

varchar

), '') || '-' || coalesce(cast(new_recovered as

varchar

), '') || '-' || coalesce(cast(total_deceased as

varchar

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

), '') || '-' || coalesce(cast(total_confirmed as

varchar

), '') || '-' || coalesce(cast(total_recovered as

varchar

), '')

as

varchar

)) as _airbyte_covid_epidemiology_hashid

from __dbt__CTE__covid_epidemiology_ab2_558

-- covid_epidemiology

)-- Final base SQL model

select

"key",

"date",

new_tested,

new_deceased,

total_tested,

new_confirmed,

new_recovered,

total_deceased,

total_confirmed,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

total_recovered,

_airbyte_emitted_at,

_airbyte_covid_epidemiology_hashid

from __dbt__CTE__covid_epidemiology_ab3_558

-- covid_epidemiology from
"postgres".quarantine._airbyte_raw_covid_epidemiology

);

Simple SQL Query

We could simplify the SQL query by removing some parts that may be unnecessary for
your current usage (such as generating a md5 column; Why exactly would I want to use
that?!).

It would turn into a simpler query:

create table "postgres"."public"."covid_epidemiology"

as (

select

_airbyte_emitted_at,

(current_timestamp at time zone 'utc')::timestamp as
_airbyte_normalized_at,

cast(jsonb_extract_path_text("_airbyte_data",'key')
as varchar) as "key",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://blog.getdbt.com/the-most-underutilized-function-in-sql/
https://blog.getdbt.com/the-most-underutilized-function-in-sql/

cast(jsonb_extract_path_text("_airbyte_data",'date')
as varchar) as "date",

cast(jsonb_extract_path_text("_airbyte_data",'new_tested')
as float) as new_tested,

cast(jsonb_extract_path_text("_airbyte_data",'new_deceased'
) as float) as new_deceased,

cast(jsonb_extract_path_text("_airbyte_data",'total_tested'
) as float) as total_tested,

cast(jsonb_extract_path_text("_airbyte_data",'new_confirmed
') as float) as new_confirmed,

cast(jsonb_extract_path_text("_airbyte_data",'new_recovered
') as float) as new_recovered,

cast(jsonb_extract_path_text("_airbyte_data",'total_decease
d') as float) as total_deceased,

cast(jsonb_extract_path_text("_airbyte_data",'total_confirm
ed') as float) as total_confirmed,

cast(jsonb_extract_path_text("_airbyte_data",'total_recover
ed') as float) as total_recovered

from "postgres".public._airbyte_raw_covid_epidemiology

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

);

Customize SQL Query

Feel free to:

● Rename the columns as you desire
○ avoiding using keywords such as "key" or "date"

● You can tweak the column data type if the ones generated by Airbyte are not the
ones you favor

○ For example, let's use Integer instead of Float for the number of Covid
cases...

● Add deduplicating logic
○ if you can identify which columns to use as Primary Keys

(since airbyte isn't able to detect those automatically yet...)
○ (Note: actually I am not even sure if I can tell the proper primary key in this

dataset...)
● Create a View (or materialized views) instead of a Table.
● etc

create view "postgres"."public"."covid_epidemiology" as (

with parse_json_cte as (

select

_airbyte_emitted_at,

cast(jsonb_extract_path_text("_airbyte_data",'key') as
varchar) as id,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

cast(jsonb_extract_path_text("_airbyte_data",'date') as
varchar) as updated_at,

cast(jsonb_extract_path_text("_airbyte_data",'new_tested')
as float) as new_tested,

cast(jsonb_extract_path_text("_airbyte_data",'new_deceased'
) as float) as new_deceased,

cast(jsonb_extract_path_text("_airbyte_data",'total_tested'
) as float) as total_tested,

cast(jsonb_extract_path_text("_airbyte_data",'new_confirmed
') as float) as new_confirmed,

cast(jsonb_extract_path_text("_airbyte_data",'new_recovered
') as float) as new_recovered,

cast(jsonb_extract_path_text("_airbyte_data",'total_decease
d') as float) as total_deceased,

cast(jsonb_extract_path_text("_airbyte_data",'total_confirm
ed') as float) as total_confirmed,

cast(jsonb_extract_path_text("_airbyte_data",'total_recover
ed') as float) as total_recovered

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

from
"postgres".public._airbyte_raw_covid_epidemiology

),

cte as (

select

*,

row_number() over (

partition by id

order by updated_at desc

) as row_num

from parse_json_cte

)

select

substring(id, 1, 2) as id, -- Probably not the right
way to identify the primary key in this dataset...

updated_at,

_airbyte_emitted_at,

case when new_tested = 'NaN' then 0 else
cast(new_tested as integer) end as new_tested,

case when new_deceased = 'NaN' then 0 else
cast(new_deceased as integer) end as new_deceased,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

case when total_tested = 'NaN' then 0 else
cast(total_tested as integer) end as total_tested,

case when new_confirmed = 'NaN' then 0 else
cast(new_confirmed as integer) end as new_confirmed,

case when new_recovered = 'NaN' then 0 else
cast(new_recovered as integer) end as new_recovered,

case when total_deceased = 'NaN' then 0 else
cast(total_deceased as integer) end as total_deceased,

case when total_confirmed = 'NaN' then 0 else
cast(total_confirmed as integer) end as total_confirmed,

case when total_recovered = 'NaN' then 0 else
cast(total_recovered as integer) end as total_recovered

from cte

where row_num = 1

);

Then you can run in your preferred SQL editor or tool!

If you are familiar with dbt or want to learn more about it, you can continue with the
following tutorial using dbt...

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Transformations with dbt (Part 2/3)

Overview
This tutorial will describe how to integrate SQL based transformations with Airbyte
syncs using specialized transformation tool: dbt.

This tutorial is the second part of the previous tutorial Transformations with SQL. Next,
we'll wrap-up with a third part on submitting transformations back in Airbyte:
Transformations with Airbyte.

(Example outputs are updated with Airbyte version 0.23.0-alpha from May 2021)

Transformations with dbt
The tool in charge of transformation behind the scenes is actually called dbt (Data Build
Tool).

Before generating the SQL files as we've seen in the previous tutorial, Airbyte sets up a
dbt Docker instance and automatically generates a dbt project for us. This is created as
specified in the dbt project documentation page with the right credentials for the target
destination. The dbt models are then run afterward, thanks to the dbt CLI. However, for
now, let's run through working with the dbt tool.

Validate dbt project settings

Let's say we identified our workspace (as shown in the previous tutorial Transformations
with SQL), and we have a workspace ID of:

NORMALIZE_WORKSPACE="5/0/"

We can verify that the dbt project is properly configured for that workspace:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://blog.getdbt.com/what--exactly--is-dbt-/
https://docs.getdbt.com/docs/building-a-dbt-project/projects
https://docs.getdbt.com/dbt-cli/cli-overview

Unset

Unset

#!/usr/bin/env bash

docker run --rm -i -v airbyte_workspace:/data -w
/data/$NORMALIZE_WORKSPACE/normalize --network host
--entrypoint /usr/local/bin/dbt airbyte/normalization debug
--profiles-dir=. --project-dir=.

Example Output:

Running with dbt=0.19.1

dbt version: 0.19.1

python version: 3.8.8

python path: /usr/local/bin/python

os info: Linux-5.10.25-linuxkit-x86_64-with-glibc2.2.5

Using profiles.yml file at ./profiles.yml

Using dbt_project.yml file at
/data/5/0/normalize/dbt_project.yml

Configuration:

profiles.yml file [OK found and valid]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

dbt_project.yml file [OK found and valid]

Required dependencies:

- git [OK found]

Connection:

host: localhost

port: 3000

user: postgres

database: postgres

schema: quarantine

search_path: None

keepalives_idle: 0

sslmode: None

Connection test: OK connection ok

Compile and build dbt normalization models

If the previous command does not show any errors or discrepancies, it is now possible
to invoke the CLI from within the docker image to trigger transformation processing:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

#!/usr/bin/env bash

docker run --rm -i -v airbyte_workspace:/data -w
/data/$NORMALIZE_WORKSPACE/normalize --network host
--entrypoint /usr/local/bin/dbt airbyte/normalization run
--profiles-dir=. --project-dir=.

Example Output:

Running with dbt=0.19.1

Found 4 models, 0 tests, 0 snapshots, 0 analyses, 364
macros, 0 operations, 0 seed files, 1 source, 0 exposures

Concurrency: 32 threads (target='prod')

1 of 1 START table model
quarantine.covid_epidemiology..............................
......................... [RUN]

1 of 1 OK created table model
quarantine.covid_epidemiology..............................
.................... [SELECT 35822 in 0.47s]

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Finished running 1 table model in 0.74s.

Completed successfully

Done. PASS=1 WARN=0 ERROR=0 SKIP=0 TOTAL=1

Exporting dbt normalization project outside Airbyte

As seen in the tutorial on exploring workspace folder, it is possible to browse the
normalize folder and examine further logs if an error occurs.

In particular, we can also take a look at the dbt models generated by Airbyte and export
them to the local host filesystem:

#!/usr/bin/env bash

TUTORIAL_DIR="$(pwd)/tutorial/"

rm -rf $TUTORIAL_DIR/normalization-files

mkdir -p $TUTORIAL_DIR/normalization-files

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

docker cp
airbyte-server:/tmp/workspace/$NORMALIZE_WORKSPACE/normaliz
e/ $TUTORIAL_DIR/normalization-files

NORMALIZE_DIR=$TUTORIAL_DIR/normalization-files/normalize

cd $NORMALIZE_DIR

cat $NORMALIZE_DIR/models/generated/**/*.sql

Example Output:

{{ config(alias="covid_epidemiology_ab1",
schema="_airbyte_quarantine",
tags=["top-level-intermediate"]) }}

-- SQL model to parse JSON blob stored in a single column
and extract into separated field columns as described by
the JSON Schema

select

{{ json_extract_scalar('_airbyte_data', ['key']) }} as
{{ adapter.quote('key') }},

{{ json_extract_scalar('_airbyte_data', ['date']) }} as
{{ adapter.quote('date') }},

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

{{ json_extract_scalar('_airbyte_data', ['new_tested'])
}} as new_tested,

{{ json_extract_scalar('_airbyte_data',
['new_deceased']) }} as new_deceased,

{{ json_extract_scalar('_airbyte_data',
['total_tested']) }} as total_tested,

{{ json_extract_scalar('_airbyte_data',
['new_confirmed']) }} as new_confirmed,

{{ json_extract_scalar('_airbyte_data',
['new_recovered']) }} as new_recovered,

{{ json_extract_scalar('_airbyte_data',
['total_deceased']) }} as total_deceased,

{{ json_extract_scalar('_airbyte_data',
['total_confirmed']) }} as total_confirmed,

{{ json_extract_scalar('_airbyte_data',
['total_recovered']) }} as total_recovered,

_airbyte_emitted_at

from {{ source('quarantine',
'_airbyte_raw_covid_epidemiology') }}

-- covid_epidemiology

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

{{ config(alias="covid_epidemiology_ab2",
schema="_airbyte_quarantine",
tags=["top-level-intermediate"]) }}

-- SQL model to cast each column to its adequate SQL type
converted from the JSON schema type

select

cast({{ adapter.quote('key') }} as {{
dbt_utils.type_string() }}) as {{ adapter.quote('key') }},

cast({{ adapter.quote('date') }} as {{
dbt_utils.type_string() }}) as {{ adapter.quote('date') }},

cast(new_tested as {{ dbt_utils.type_float() }}) as
new_tested,

cast(new_deceased as {{ dbt_utils.type_float() }}) as
new_deceased,

cast(total_tested as {{ dbt_utils.type_float() }}) as
total_tested,

cast(new_confirmed as {{ dbt_utils.type_float() }}) as
new_confirmed,

cast(new_recovered as {{ dbt_utils.type_float() }}) as
new_recovered,

cast(total_deceased as {{ dbt_utils.type_float() }}) as
total_deceased,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

cast(total_confirmed as {{ dbt_utils.type_float() }}) as
total_confirmed,

cast(total_recovered as {{ dbt_utils.type_float() }}) as
total_recovered,

_airbyte_emitted_at

from {{ ref('covid_epidemiology_ab1_558') }}

-- covid_epidemiology

{{ config(alias="covid_epidemiology_ab3",
schema="_airbyte_quarantine",
tags=["top-level-intermediate"]) }}

-- SQL model to build a hash column based on the values of
this record

select

*,

{{ dbt_utils.surrogate_key([

adapter.quote('key'),

adapter.quote('date'),

'new_tested',

'new_deceased',

'total_tested',

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

'new_confirmed',

'new_recovered',

'total_deceased',

'total_confirmed',

'total_recovered',

]) }} as _airbyte_covid_epidemiology_hashid

from {{ ref('covid_epidemiology_ab2_558') }}

-- covid_epidemiology

{{ config(alias="covid_epidemiology", schema="quarantine",
tags=["top-level"]) }}

-- Final base SQL model

select

{{ adapter.quote('key') }},

{{ adapter.quote('date') }},

new_tested,

new_deceased,

total_tested,

new_confirmed,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

new_recovered,

total_deceased,

total_confirmed,

total_recovered,

_airbyte_emitted_at,

_airbyte_covid_epidemiology_hashid

from {{ ref('covid_epidemiology_ab3_558') }}

-- covid_epidemiology from {{ source('quarantine',
'_airbyte_raw_covid_epidemiology') }}

If you have dbt installed locally on your machine, you can then view, edit, version,
customize, and run the dbt models in your project outside Airbyte syncs.

#!/usr/bin/env bash

dbt deps --profiles-dir=$NORMALIZE_DIR
--project-dir=$NORMALIZE_DIR

dbt run --profiles-dir=$NORMALIZE_DIR
--project-dir=$NORMALIZE_DIR --full-refresh

Example Output:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.getdbt.com/dbt-cli/installation/

Unset

Running with dbt=0.19.1

Installing
https://github.com/fishtown-analytics/dbt-utils.git@0.6.4

Installed from revision 0.6.4

Running with dbt=0.19.1

Found 4 models, 0 tests, 0 snapshots, 0 analyses, 364
macros, 0 operations, 0 seed files, 1 source, 0 exposures

Concurrency: 32 threads (target='prod')

1 of 1 START table model
quarantine.covid_epidemiology..............................
......................... [RUN]

1 of 1 OK created table model
quarantine.covid_epidemiology..............................
.................... [SELECT 35822 in 0.44s]

Finished running 1 table model in 0.63s.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Completed successfully

Done. PASS=1 WARN=0 ERROR=0 SKIP=0 TOTAL=1

Now, that you've exported the generated normalization models, you can edit and tweak
them as necessary.

If you want to know how to push your modifications back to Airbyte and use your
updated dbt project during Airbyte syncs, you can continue with the following tutorial on
importing transformations into Airbyte...

Transformations with Airbyte (Part 3/3)

Overview
This tutorial will describe how to push a custom dbt transformation project back to
Airbyte to use during syncs.

This guide is the last part of the tutorial series on transformations, following
Transformations with SQL and connecting EL with T using dbt.

(Example outputs are updated with Airbyte version 0.23.0-alpha from May 2021)

Transformations with Airbyte
After replication of data from a source connector (Extract) to a destination connector
(Load), multiple optional transformation steps can now be applied as part of an Airbyte
Sync. Possible workflows are:

1. Basic normalization transformations as automatically generated by Airbyte dbt
code generator.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

2. Customized normalization transformations as edited by the user (the default
generated normalization one should therefore be disabled)

3. Customized business transformations as specified by the user.

Public Git repository
In the connection settings page, I can add new Transformations steps to apply after
normalization. For example, I want to run my custom dbt project jaffle_shop, whenever
my sync is done replicating and normalizing my data.

You can find the jaffle shop test repository by clicking here.

Private Git repository

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/dbt-labs/jaffle_shop

Unset

Now, let's connect my mono-repo Business Intelligence project stored in a private git
repository to update the related tables and dashboards when my Airbyte syncs
complete.

Note that if you need to connect to a private git repository, the recommended way to do
so is to generate a Personal Access Token that can be used instead of a
password. Then, you'll be able to include the credentials in the git repository url:

● GitHub - Personal Access Tokens
● Gitlab - Personal Access Tokens
● Azure DevOps - Personal Access Tokens

And then use it for cloning:

git clone https://username:token@github.com/user/repo

Where https://username:token@github.com/user/repo is the git repository
url.

Example of a private git repo used as transformations

As an example, I go through my GitHub account to generate a Personal Access Token
to use in Airbyte with permissions to clone my private repositories:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate

This provides me with a token to use:

In Airbyte, I can use the git url as:
https://airbyteuser:ghp_***********ShLrG2yXGYF@github.com/airbyt
euser/private-datawarehouse.git

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

How-to use custom dbt tips

Allows "chained" dbt transformations

Since every transformation leave in his own Docker container, at this moment I can't rely
on packages installed using dbt deps for the next transformations. According to the
dbt documentation, I can configure the packages folder outside of the container:

dbt_project.yml

packages-install-path: '../dbt_packages'

If I want to chain dbt deps and dbt run, I may use dbt build instead, which is not
equivalent to the two previous commands, but will remove the need to alter the
configuration of dbt.

Refresh models partially

Since I am using a mono-repo from my organization, other team members or
departments may also contribute their dbt models to this centralized location. This will
give us many dbt models and sources to build our complete data warehouse...

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.getdbt.com/reference/project-configs/packages-install-path
https://docs.getdbt.com/reference/commands/build

Unset

Unset

The whole warehouse is scheduled for full refresh on a different orchestration tool, or as
part of the git repository CI. However, here, I want to partially refresh some small
relevant tables when attaching this operation to a specific Airbyte sync, in this case, the
Covid dataset.

Therefore, I can restrict the execution of models to a particular tag or folder by
specifying in the dbt cli arguments, in this case whatever is related to "covid_api":

run --models tag:covid_api opendata.base.*

Now, when replications syncs are triggered by Airbyte, my custom transformations from
my private git repository are also run at the end!

Using a custom run with variables

If you want to use a custom run and pass variables you need to use the follow syntax:

run --vars
'{"table_name":"sample","schema_name":"other_value"}'

This string must have no space. There is a Github issue to improve this. If you want to
contribute to Airbyte, this is a good opportunity!

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/airbytehq/airbyte/issues/4348

Unset

Basic Normalization

High-Level Overview
INFO

The high-level overview contains all the information you need to use Basic
Normalization when pulling from APIs. Information past that can be read for advanced
or educational purposes.

When you run your first Airbyte sync without the basic normalization, you'll notice that
your data gets written to your destination as one data column with a JSON blob that
contains all of your data. This is the _airbyte_raw_ table that you may have seen
before. Why do we create this table? A core tenet of ELT philosophy is that data should
be untouched as it moves through the E and L stages so that the raw data is always
accessible. If an unmodified version of the data exists in the destination, it can be
retransformed without needing to sync data again.

If you have Basic Normalization enabled, Airbyte automatically uses this JSON blob to
create a schema and tables with your data in mind, converting it to the format of your
destination. This runs after your sync and may take a long time if you have a large
amount of data synced. If you don't enable Basic Normalization, you'll have to transform
the JSON data from that column yourself.

Example
Basic Normalization uses a fixed set of rules to map a json object from a source to the
types and format that are native to the destination. For example if a source emits data
that looks like this:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

{

"make": "alfa romeo",

"model": "4C coupe",

"horsepower": "247"

}

The destination connectors produce the following raw table in the destination database:

CREATE TABLE "_airbyte_raw_cars" (

-- metadata added by airbyte

"_airbyte_ab_id" VARCHAR, -- uuid value assigned by
connectors to each row of the data written in the
destination.

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE, -- time at
which the record was emitted.

"_airbyte_data" JSONB -- data stored as a Json Blob.

);

Then, basic normalization would create the following table:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

CREATE TABLE "cars" (

"_airbyte_ab_id" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

-- data from source

"make" VARCHAR,

"model" VARCHAR,

"horsepower" INTEGER

);

Normalization metadata columns
You'll notice that some metadata are added to keep track of important information about
each record.

● Some are introduced at the destination connector level: These are propagated by
the normalization process from the raw table to the final table

○ _airbyte_ab_id: uuid value assigned by connectors to each row of the
data written in the destination.

○ _airbyte_emitted_at: time at which the record was emitted and
recorded by destination connector.

● While other metadata columns are created at the normalization step.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

○ _airbyte_<table_name>_hashid: hash value assigned by airbyte
normalization derived from a hash function of the record data.

○ _airbyte_normalized_at: time at which the record was last
normalized (useful to track when incremental transformations are
performed)

Additional metadata columns can be added on some tables depending on the usage:

● On the Slowly Changing Dimension (SCD) tables:
○ _airbyte_start_at: equivalent to the cursor column defined on the

table, denotes when the row was first seen
○ _airbyte_end_at: denotes until when the row was seen with these

particular values. If this column is not NULL, then the record has been
updated and is no longer the most up to date one. If NULL, then the row is
the latest version for the record.

○ _airbyte_active_row: denotes if the row for the record is the latest
version or not.

○ _airbyte_unique_key_scd: hash of primary keys + cursors used to
de-duplicate the scd table.

○ On de-duplicated (and SCD) tables:
○ _airbyte_unique_key: hash of primary keys used to de-duplicate the

final table.

The normalization rules are not configurable. They are designed to pick a reasonable
set of defaults to hit the 80/20 rule of data normalization. We respect that normalization
is a detail-oriented problem and that with a fixed set of rules, we cannot normalize your
data in such a way that covers all use cases. If this feature does not meet your
normalization needs, we always put the full json blob in destination as well, so that you
can parse that object however best meets your use case. We will be adding more
advanced normalization functionality shortly. Airbyte is focused on the EL of ELT. If you
need a really featureful tool for the transformations then, we suggest trying out dbt.

Airbyte places the json blob version of your data in a table called
_airbyte_raw_<stream name>. If basic normalization is turned on, it will place a
separate copy of the data in a table called <stream name>. Under the hood, Airbyte is
using dbt, which means that the data only ingresses into the data store one time. The
normalization happens as a query within the datastore. This implementation avoids
extra network time and costs.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Why does Airbyte have Basic Normalization?
At its core, Airbyte is geared to handle the EL (Extract Load) steps of an ELT process.
These steps can also be referred in Airbyte's dialect as "Source" and "Destination".

However, this is actually producing a table in the destination with a JSON blob column...
For the typical analytics use case, you probably want this json blob normalized so that
each field is its own column.

So, after EL, comes the T (transformation) and the first T step that Airbyte actually
applies on top of the extracted data is called "Normalization".

Airbyte runs this step before handing the final data over to other tools that will manage
further transformation down the line.

To summarize, we can represent the ELT process in the diagram below. These are
steps that happens between your "Source Database or API" and the final "Replicated
Tables" with examples of implementation underneath:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

In Airbyte, the current normalization option is implemented using a dbt Transformer
composed of:

● Airbyte base-normalization python package to generate dbt SQL models files
● dbt to compile and executes the models on top of the data in the destinations that

supports it.

Destinations that Support Basic Normalization
● BigQuery
● MS Server SQL
● MySQL

○ The server must support the WITH keyword.
○ Require MySQL >= 8.0, or MariaDB >= 10.2.1.

● Postgres
● Redshift
● Snowflake

Basic Normalization can be configured when you're creating the connection between
your Connection Setup and after in the Transformation Tab. Select the option:
Normalized tabular data.

Rules

Typing

Airbyte tracks types using JsonSchema's primitive types. Here is how these types will
map onto standard SQL types. Note: The names of the types may differ slightly across
different destinations.

Airbyte uses the types described in the catalog to determine the correct type for each
column. It does not try to use the values themselves to infer the type.

JsonSchema Type Resulting Type Notes

number
float

integer integer

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

string string

bit boolean

boolean boolean

string with format label
date-time

timestamp with
timezone

array new table see
nesting

object new table see
nesting

Nesting

Basic Normalization attempts to expand any nested arrays or objects it receives into
separate tables in order to allow more ergonomic querying of your data.

Arrays

Basic Normalization expands arrays into separate tables. For example if the source
provides the following data:

{

"make": "alfa romeo",

"model": "4C coupe",

"limited_editions": [

{ "name": "4C spider", "release_year": 2013 },

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

{ "name" : "4C spider italia" , "release_year": 2018 }

]

}

The resulting normalized schema would be:

CREATE TABLE "cars" (

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"make" VARCHAR,

"model" VARCHAR

);

CREATE TABLE "limited_editions" (

"_airbyte_limited_editions_hashid" VARCHAR,

"_airbyte_cars_foreign_hashid" VARCHAR,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"name" VARCHAR,

"release_year" VARCHAR

);

If the nested items in the array are not objects then they are expanded into a string field
of comma separated values e.g.:

{

"make": "alfa romeo",

"model": "4C coupe",

"limited_editions": ["4C spider", "4C spider italia"]

}

The resulting normalized schema would be:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

CREATE TABLE "cars" (

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"make" VARCHAR,

"model" VARCHAR

);

CREATE TABLE "limited_editions" (

"_airbyte_limited_editions_hashid" VARCHAR,

"_airbyte_cars_foreign_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"data" VARCHAR

);

Objects

In the case of a nested object e.g.:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

{

"make": "alfa romeo",

"model": "4C coupe",

"powertrain_specs": { "horsepower": 247, "transmission":
"6-speed" }

}

The normalized schema would be:

CREATE TABLE "cars" (

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"make" VARCHAR,

"model" VARCHAR

);

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

CREATE TABLE "powertrain_specs" (

"_airbyte_powertrain_hashid" VARCHAR,

"_airbyte_cars_foreign_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"horsepower" INTEGER,

"transmission" VARCHAR

);

Naming Collisions for un-nested objects

When extracting nested objects or arrays, the Basic Normalization process needs to
figure out new names for the expanded tables.

For example, if we had a cars table with a nested column cars containing an object
whose schema is identical to the parent table.

{

"make": "alfa romeo",

"model": "4C coupe",

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

"cars": [

{ "make": "audi", "model": "A7" },

{ "make" : "lotus" , "model": "elise" }

{ "make" : "chevrolet" , "model": "mustang" }

]

}

The expanded table would have a conflict in terms of naming since both are named
cars. To avoid name collisions and ensure a more consistent naming scheme, Basic
Normalization chooses the expanded name as follows:

● cars for the original parent table
● cars_da3_cars for the expanded nested columns following this naming

scheme in 3 parts: <Json path>_<Hash>_<nested column name>
● Json path: The entire json path string with '_' characters used as delimiters to

reach the table that contains the nested column name.
● Hash: Hash of the entire json path to reach the nested column reduced to 3

characters. This is to make sure we have a unique name (in case part of the
name gets truncated, see below)

● Nested column name: name of the column being expanded into its own table.

By following this strategy, nested columns should "never" collide with other table names.
If it does, an exception will probably be thrown either by the normalization process or by
dbt that runs afterward.

CREATE TABLE "cars" (

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"make" VARCHAR,

"model" VARCHAR

);

CREATE TABLE "cars_da3_cars" (

"_airbyte_cars_hashid" VARCHAR,

"_airbyte_cars_foreign_hashid" VARCHAR,

"_airbyte_emitted_at" TIMESTAMP_WITH_TIMEZONE,

"_airbyte_normalized_at" TIMESTAMP_WITH_TIMEZONE,

"make" VARCHAR,

"model" VARCHAR

);

Naming limitations & truncation

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Note that different destinations have various naming limitations, most commonly on how
long names can be. For instance, the Postgres documentation states:
The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names
can be written in commands, but they will be truncated. By default, NAMEDATALEN is
64 so the maximum identifier length is 63 bytes

Most modern data warehouses have name lengths limits on the longer side, so this
should not affect us that often. Basic Normalization will fallback to the following rules:

1. No Truncate if under destination's character limits

However, in the rare cases where these limits are reached:
1. Truncate only the Json path to fit into destination's character limits
2. Truncate the Json path to at least the 10 first characters, then truncate the

nested column name starting in the middle to preserve prefix/suffix substrings
intact (whenever a truncate in the middle is made, two '__' characters are also
inserted to denote where it happened) to fit into destination's character limits

As an example from the hubspot source, we could have the following tables with nested
columns:

Description Example 1 Example 2

Original Stream
Name

companies deals

Json path to the
nested column

companies/property_eng
agements_last_meeting_
booked_campaign

deals/properties/engage
ments_last_meeting_book
ed_medium

Final table name
of expanded
nested column on
BigQuery

companies_2e8_property_eng
agements_last_meeting_book
ed_campaign

deals_properties_6e6_engagem
ents_last_meeting_booked_me
dium

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Final table name
of expanded
nested column on
Postgres

companies_2e8_property_eng
ag__oked_campaign

deals_prop_6e6_engagements_
l__booked_medium

As mentioned in the overview:

● Airbyte places the json blob version of your data in a table called
_airbyte_raw_<stream name>.

● If basic normalization is turned on, it will place a separate copy of the data in a
table called <stream name>.

● In certain pathological cases, basic normalization is required to generate large
models with many columns and multiple intermediate transformation steps for a
stream. This may break down the "ephemeral" materialization strategy and
require the use of additional intermediate views or tables instead. As a result, you
may notice additional temporary tables being generated in the destination to
handle these checkpoints.

UI Configurations
To enable basic normalization (which is optional), you can toggle it on or disable it in the
"Normalization and Transformation" section when setting up your connection:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Incremental runs
When the source is configured with sync modes compatible with incremental
transformations (using append on destination) such as (full_refresh_append,
incremental append or incremental deduped history), only rows that have changed in
the source are transferred over the network and written by the destination connector.
Normalization will then try to build the normalized tables incrementally as the rows in the
raw tables that have been created or updated since the last time dbt ran. As such, on
each dbt run, the models get built incrementally. This limits the amount of data that
needs to be transformed, vastly reducing the runtime of the transformations. This
improves warehouse performance and reduces compute costs. Because normalization
can be either run incrementally and, or, in full refresh, a technical column
_airbyte_normalized_at can serve to track when was the last time a record has
been transformed and written by normalization. This may greatly diverge from the
_airbyte_emitted_at value as the normalized tables could be totally re-built at a
latter time from the data stored in the _airbyte_raw tables.

Partitioning, clustering, sorting, indexing

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Normalization produces tables that are partitioned, clustered, sorted or indexed
depending on the destination engine and on the type of tables being built. The goal of
these are to make read more performant, especially when running incremental updates.

In general, normalization needs to do lookup on the last emitted_at column to know if a
record is freshly produced and need to be incrementally processed or not. But in certain
models, such as SCD tables for example, we also need to retrieve older data to update
their type 2 SCD end_date and active_row flags, thus a different partitioning scheme is
used to optimize that use case.

On Postgres destination, an additional table suffixed with _stg for every stream
replicated in incremental deduped history needs to be persisted (in a different staging
schema) for incremental transformations to work because of a limitation.

Extending Basic Normalization
Note that all the choices made by Normalization as described in this documentation
page in terms of naming (and more) could be overridden by your own custom choices.
To do so, you can follow the following tutorials:

● to build a custom SQL view with your own naming conventions
● to export, edit and run custom dbt normalization yourself
● or further, you can configure the use of a custom dbt project within Airbyte by

following this guide.

Operations
Airbyte connections support configuring additional transformations that execute after the
sync. Useful applications could be:

● Customized normalization to better fit the requirements of your own business
context.

● Business transformations from a technical data representation into a more logical
and business oriented data structure. This can facilitate usage by end-users,

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://github.com/dbt-labs/docs.getdbt.com/issues/335#issuecomment-694199569

non-technical operators, and executives looking to generate Business
Intelligence dashboards and reports.

● Data Quality, performance optimization, alerting and monitoring, etc.
● Integration with other tools from your data stack (orchestration, data visualization,

etc.)

Supported Operations

dbt transformations

- git repository url:

A url to a git repository to (shallow) clone the latest dbt project code from.

The project versioned in the repository is expected to:

● be a valid dbt package with a dbt_project.yml file at its root.
● have a dbt_project.yml with a "profile" name declared as described here.

When using the dbt CLI, dbt checks your profiles.yml file for a profile with the same
name. A profile contains all the details required to connect to your data warehouse. This
file generally lives outside of your dbt project to avoid sensitive credentials being
checked in to version control. Therefore, a profiles.yml will be generated according
to the configured destination from the Airbyte UI.

Note that if you prefer to use your own profiles.yml stored in the git repository or in
the Docker image, then you can specify an override with
--profiles-dir=<path-to-my-profiles-yml> in the dbt CLI arguments.

- git repository branch (optional):

The name of the branch to use when cloning the git repository. If left empty, git will use
the default branch of your repository.

- docker image:

A Docker image and tag to run dbt commands from. The Docker image should have
/bin/bash and dbt installed for this operation type to work.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.getdbt.com/dbt-cli/configure-your-profile

A typical value for this field would be for example: fishtownanalytics/dbt:1.0.0
from dbt dockerhub.

This field lets you configure the version of dbt that your custom dbt project requires and
the loading of additional software and packages necessary for your transformations
(other than your dbt packages.yml file).

- dbt cli arguments

This operation type is aimed at running the dbt cli.

A typical value for this field would be "run" and the actual command invoked would as a
result be: dbt run in the docker container.

One thing to consider is that dbt allows for vast configuration of the run command, for
example, allowing you to select a subset of models. You can find the dbt reference docs
which describes this set of available commands and options.

Future Operations
● Docker/Script operations: Execute a generic script in a custom Docker container.
● Webhook operations: Trigger API or hooks from other providers.
● Airflow operations: To use a specialized orchestration tool that lets you schedule

and manage more advanced/complex sequences of operations in your sync
workflow.

Going Further
In the meantime, please feel free to react, comment, and share your thoughts/use cases
with us. We would be glad to hear your feedback and ideas as they will help shape the
next set of features and our roadmap for the future. You can head to our GitHub and
participate in the corresponding issue or discussions. Thank you!

Browsing Output Logs

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://hub.docker.com/r/fishtownanalytics/dbt/tags?page=1&ordering=last_updated
https://docs.getdbt.com/reference/dbt-commands

Overview
This tutorial will describe how to explore Airbyte Workspace folders.

This is useful if you need to browse the docker volumes where extra output files of
Airbyte server and workers are stored since they may not be accessible through the UI.

Exploring the Logs folders
When running a Sync in Airbyte, you have the option to look at the logs in the UI as
shown next.

Identifying Workspace IDs

In the screenshot below, you can notice the highlighted blue boxes are showing the id
numbers that were used for the selected "Attempt" for this sync job.

In this case, the job was running in /tmp/workspace/9/2/ folder since the tab of the
third attempt is being selected in the UI (first attempt would be
/tmp/workspace/9/0/).

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

The highlighted button in the red circle on the right would allow you to download the
logs.log file.
However, there are actually more files being recorded in the same workspace folder...
Thus, we might want to dive deeper to explore these folders and gain a better
understanding of what is being run by Airbyte.

Understanding the Docker run commands

Scrolling down a bit more, we can also read the different docker commands being used
internally are starting with:

docker run --rm -i -v airbyte_workspace:/data -v
/tmp/airbyte_local:/local -w /data/9/2 --network host ...

From there, we can observe that Airbyte is calling the -v option to use a docker named
volume called airbyte_workspace that is mounted in the container at the location
/data.

Following Docker Volume documentation, we can inspect and manipulate persisted
configuration data in these volumes.

Opening a Unix shell prompt to browse the Docker volume

For example, we can run any docker container/image to browse the content of this
named volume by mounting it similarly, let's use the busybox image.

docker run -it --rm --volume airbyte_workspace:/data
busybox

This will drop you into an sh shell inside the docker container to allow you to do what
you want inside a BusyBox system from which we can browse the filesystem and
accessing to log files:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.docker.com/storage/volumes/
https://hub.docker.com/_/busybox

Unset

Unset

Unset

Unset

ls /data/9/2/

Example Output:

catalog.json normalize
tap_config.json

logs.log singer_rendered_catalog.json
target_config.json

Browsing from the host shell

Or, if you don't want to transfer to a shell prompt inside the docker image, you can
simply run Shell commands using docker commands as a proxy like this:

docker run -it --rm --volume airbyte_workspace:/data
busybox ls /data/9/2

Example Output:

catalog.json singer_rendered_catalog.json

logs.log tap_config.json

normalize target_config.json

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Unset

Reading the content of the catalog.json file

For example, it is often useful to inspect the content of the catalog file. You could do so
by running a cat command:

docker run -it --rm --volume airbyte_workspace:/data
busybox cat /data/9/2/catalog.json

Example Output:

{"streams":[{"stream":{"name":"exchange_rate","json_schema"
:{"type":"object","properties":{"CHF":{"type":"number"},"HR
K":{"type":"number"},"date":{"type":"string"},"MXN":{"type"
:"number"},"ZAR":{"type":"number"},"INR":{"type":"number"},
"CNY":{"type":"number"},"THB":{"type":"number"},"AUD":{"typ
e":"number"},"ILS":{"type":"number"},"KRW":{"type":"number"
},"JPY":{"type":"number"},"PLN":{"type":"number"},"GBP":{"t
ype":"number"},"IDR":{"type":"number"},"HUF":{"type":"numbe
r"},"PHP":{"type":"number"},"TRY":{"type":"number"},"RUB":{
"type":"number"},"HKD":{"type":"number"},"ISK":{"type":"num
ber"},"EUR":{"type":"number"},"DKK":{"type":"number"},"CAD"
:{"type":"number"},"MYR":{"type":"number"},"USD":{"type":"n
umber"},"BGN":{"type":"number"},"NOK":{"type":"number"},"RO
N":{"type":"number"},"SGD":{"type":"number"},"CZK":{"type":
"number"},"SEK":{"type":"number"},"NZD":{"type":"number"},"
BRL":{"type":"number"}}},"supported_sync_modes":["full_refr
esh"],"default_cursor_field":[]},"sync_mode":"full_refresh"
,"cursor_field":[]}]}

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://docs.airbyte.com/understanding-airbyte/beginners-guide-to-catalog

Unset

Unset

Unset

Extract catalog.json file from docker volume

Or if you want to copy it out from the docker image onto your host machine:

docker cp airbyte-server:/tmp/workspace/9/2/catalog.json .

cat catalog.json

Browsing on Kubernetes

If you are running on Kubernetes, use the following commands instead to browsing and
copy the files to your local.

To browse, identify the pod you are interested in and exec into it. You will be presented
with a terminal that will accept normal linux commands e.g ls.

kubectl exec -it <pod name> -n <namespace pod is in> -c
main bash

e.g.

kubectl exec -it destination-bigquery-worker-3607-0-chlle
-n jobs -c main bash

root@destination-bigquery-worker-3607-0-chlle:/config# ls

FINISHED_UPLOADING destination_catalog.json
destination_config.json

To copy the file on to your local in order to preserve it's contents:

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

kubectl cp <namespace pods are
in>/<normalisation-pod-name>:/config/destination_catalog.js
on ./catalog.json

e.g.

kubectl cp
jobs/normalization-worker-3605-0-sxtox:/config/destination_
catalog.json ./catalog.json

cat ./catalog.json

CSV or JSON local Destinations: Check local data
folder
If you setup a pipeline using one of the local File based destinations (CSV or JSON),
Airbyte is writing the resulting files containing the data in the special /local/ directory
in the container. By default, this volume is mounted from /tmp/airbyte_local on the
host machine. So you need to navigate to this local folder on the filesystem of the
machine running the Airbyte deployment to retrieve the local data files.
CAUTION

Please make sure that Docker Desktop has access to /tmp (and /private on a
MacOS, as /tmp has a symlink that points to /private. It will not work otherwise). You
allow it with "File sharing" in Settings -> Resources -> File sharing ->
add the one or two above folder and hit the "Apply & restart" button.

Or, you can also run through docker commands as proxy:

#!/usr/bin/env bash

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

echo "In the container:"

docker run -it --rm -v /tmp/airbyte_local:/local busybox
find /local

echo ""

echo "On the host:"

find /tmp/airbyte_local

Example Output:

In the container:

/local

/local/data

/local/data/exchange_rate_raw.csv

On the host:

/tmp/airbyte_local

/tmp/airbyte_local/data

/tmp/airbyte_local/data/exchange_rate_raw.csv

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

Unset

Notes about running on macOS vs Linux
Note that Docker for Mac is not a real Docker host, now it actually runs a virtual
machine behind the scenes and hides it from you to make things "simpler".

Here are some related links as references on accessing Docker Volumes:

● on macOS Using Docker containers in 2019
● official doc Use Volume

From these discussions, we've been using on macOS either:
1. any docker container/image to browse the virtual filesystem by mounting the

volume in order to access them, for example with busybox
2. or extract files from the volume by copying them onto the host with Docker cp

However, as a side remark on Linux, accessing to named Docker Volume can be easier
since you simply need to:

docker volume inspect <volume_name>

Then look at the Mountpoint value, this is where the volume is actually stored in the
host filesystem and you can directly retrieve files directly from that folder.

© Knoema | All Rights Reserved. Proprietary and Confidential www.knoema.com

https://stackoverflow.com/a/55648186
https://docs.docker.com/storage/volumes/#backup-restore-or-migrate-data-volumes
https://hub.docker.com/_/busybox
https://docs.docker.com/engine/reference/commandline/cp/

